Model estimates of climate controls on pan-Arctic wetland methane emissions

Climate factors including soil temperature and moisture, incident solar radiation, and atmospheric carbon dioxide concentration are important environmental controls on methane (CH 4 ) emissions from northern wetlands. We investigated the spatiotemporal distributions of the influence of these factors...

Full description

Bibliographic Details
Published in:Biogeosciences
Main Authors: Chen, X., Bohn, T. J., Lettenmaier, D. P.
Format: Text
Language:English
Published: 2018
Subjects:
Online Access:https://doi.org/10.5194/bg-12-6259-2015
https://www.biogeosciences.net/12/6259/2015/
id ftcopernicus:oai:publications.copernicus.org:bg29592
record_format openpolar
spelling ftcopernicus:oai:publications.copernicus.org:bg29592 2023-05-15T14:59:52+02:00 Model estimates of climate controls on pan-Arctic wetland methane emissions Chen, X. Bohn, T. J. Lettenmaier, D. P. 2018-09-27 application/pdf https://doi.org/10.5194/bg-12-6259-2015 https://www.biogeosciences.net/12/6259/2015/ eng eng doi:10.5194/bg-12-6259-2015 https://www.biogeosciences.net/12/6259/2015/ eISSN: 1726-4189 Text 2018 ftcopernicus https://doi.org/10.5194/bg-12-6259-2015 2019-12-24T09:53:00Z Climate factors including soil temperature and moisture, incident solar radiation, and atmospheric carbon dioxide concentration are important environmental controls on methane (CH 4 ) emissions from northern wetlands. We investigated the spatiotemporal distributions of the influence of these factors on northern high-latitude wetland CH 4 emissions using an enhanced version of the Variable Infiltration Capacity (VIC) land surface model. We simulated CH 4 emissions from wetlands across the pan-Arctic domain over the period 1948–2006, yielding annual average emissions of 36.1 ± 6.7 Tg CH 4 yr −1 for the period 1997–2006. We characterized historical sensitivities of CH 4 emissions to air temperature, precipitation, incident long- and shortwave radiation, and atmospheric [CO 2 ] as a function of average summer air temperature and precipitation. Emissions from relatively warm and dry wetlands in the southern (permafrost-free) portion of the domain were positively correlated with precipitation and negatively correlated with air temperature, while emissions from wetter and colder wetlands further north (permafrost) were positively correlated with air temperature. Over the entire period 1948–2006, our reconstructed CH 4 emissions increased by 20 %, the majority of which can be attributed to an increasing trend in summer air temperature. We estimated future emissions in response to 21st century warming as predicted by CMIP5 (Coupled Model Intercomparison Project Phase 5) model projections to result in end-of-century CH 4 emissions 38–53 % higher than our reconstructed 1997–2006 emissions, accompanied by the northward migration of warmer and drier than optimal conditions for CH 4 emissions, implying a reduced role for temperature in driving future increases in emissions. Text Arctic permafrost Copernicus Publications: E-Journals Arctic Biogeosciences 12 21 6259 6277
institution Open Polar
collection Copernicus Publications: E-Journals
op_collection_id ftcopernicus
language English
description Climate factors including soil temperature and moisture, incident solar radiation, and atmospheric carbon dioxide concentration are important environmental controls on methane (CH 4 ) emissions from northern wetlands. We investigated the spatiotemporal distributions of the influence of these factors on northern high-latitude wetland CH 4 emissions using an enhanced version of the Variable Infiltration Capacity (VIC) land surface model. We simulated CH 4 emissions from wetlands across the pan-Arctic domain over the period 1948–2006, yielding annual average emissions of 36.1 ± 6.7 Tg CH 4 yr −1 for the period 1997–2006. We characterized historical sensitivities of CH 4 emissions to air temperature, precipitation, incident long- and shortwave radiation, and atmospheric [CO 2 ] as a function of average summer air temperature and precipitation. Emissions from relatively warm and dry wetlands in the southern (permafrost-free) portion of the domain were positively correlated with precipitation and negatively correlated with air temperature, while emissions from wetter and colder wetlands further north (permafrost) were positively correlated with air temperature. Over the entire period 1948–2006, our reconstructed CH 4 emissions increased by 20 %, the majority of which can be attributed to an increasing trend in summer air temperature. We estimated future emissions in response to 21st century warming as predicted by CMIP5 (Coupled Model Intercomparison Project Phase 5) model projections to result in end-of-century CH 4 emissions 38–53 % higher than our reconstructed 1997–2006 emissions, accompanied by the northward migration of warmer and drier than optimal conditions for CH 4 emissions, implying a reduced role for temperature in driving future increases in emissions.
format Text
author Chen, X.
Bohn, T. J.
Lettenmaier, D. P.
spellingShingle Chen, X.
Bohn, T. J.
Lettenmaier, D. P.
Model estimates of climate controls on pan-Arctic wetland methane emissions
author_facet Chen, X.
Bohn, T. J.
Lettenmaier, D. P.
author_sort Chen, X.
title Model estimates of climate controls on pan-Arctic wetland methane emissions
title_short Model estimates of climate controls on pan-Arctic wetland methane emissions
title_full Model estimates of climate controls on pan-Arctic wetland methane emissions
title_fullStr Model estimates of climate controls on pan-Arctic wetland methane emissions
title_full_unstemmed Model estimates of climate controls on pan-Arctic wetland methane emissions
title_sort model estimates of climate controls on pan-arctic wetland methane emissions
publishDate 2018
url https://doi.org/10.5194/bg-12-6259-2015
https://www.biogeosciences.net/12/6259/2015/
geographic Arctic
geographic_facet Arctic
genre Arctic
permafrost
genre_facet Arctic
permafrost
op_source eISSN: 1726-4189
op_relation doi:10.5194/bg-12-6259-2015
https://www.biogeosciences.net/12/6259/2015/
op_doi https://doi.org/10.5194/bg-12-6259-2015
container_title Biogeosciences
container_volume 12
container_issue 21
container_start_page 6259
op_container_end_page 6277
_version_ 1766331980751831040