Biogeophysical impacts of peatland forestation on regional climate changes in Finland

Land cover changes can impact the climate by influencing the surface energy and water balance. Naturally treeless or sparsely treed peatlands were extensively drained to stimulate forest growth in Finland over the second half of 20th century. The aim of this study is to investigate the biogeophysica...

Full description

Bibliographic Details
Published in:Biogeosciences
Main Authors: Gao, Y., Markkanen, T., Backman, L., Henttonen, H. M., Pietikäinen, J.-P., Mäkelä, H. M., Laaksonen, A.
Format: Text
Language:English
Published: 2018
Subjects:
Online Access:https://doi.org/10.5194/bg-11-7251-2014
https://www.biogeosciences.net/11/7251/2014/
id ftcopernicus:oai:publications.copernicus.org:bg25845
record_format openpolar
spelling ftcopernicus:oai:publications.copernicus.org:bg25845 2023-05-15T18:40:36+02:00 Biogeophysical impacts of peatland forestation on regional climate changes in Finland Gao, Y. Markkanen, T. Backman, L. Henttonen, H. M. Pietikäinen, J.-P. Mäkelä, H. M. Laaksonen, A. 2018-10-05 application/pdf https://doi.org/10.5194/bg-11-7251-2014 https://www.biogeosciences.net/11/7251/2014/ eng eng doi:10.5194/bg-11-7251-2014 https://www.biogeosciences.net/11/7251/2014/ eISSN: 1726-4189 Text 2018 ftcopernicus https://doi.org/10.5194/bg-11-7251-2014 2019-12-24T09:53:54Z Land cover changes can impact the climate by influencing the surface energy and water balance. Naturally treeless or sparsely treed peatlands were extensively drained to stimulate forest growth in Finland over the second half of 20th century. The aim of this study is to investigate the biogeophysical effects of peatland forestation on regional climate in Finland. Two sets of 18-year climate simulations were done with the regional climate model REMO by using land cover data based on pre-drainage (1920s) and post-drainage (2000s) Finnish national forest inventories. In the most intensive peatland forestation area, located in the middle west of Finland, the results show a warming in April of up to 0.43 K in monthly-averaged daily mean 2 m air temperature, whereas a slight cooling from May to October of less than 0.1 K in general is found. Consequently, snow clearance days over that area are advanced up to 5 days in the mean of 15 years. No clear signal is found for precipitation. Through analysing the simulated temperature and energy balance terms, as well as snow depth over five selected subregions, a positive feedback induced by peatland forestation is found between decreased surface albedo and increased surface air temperature in the snow-melting period. Our modelled results show good qualitative agreements with the observational data. In general, decreased surface albedo in the snow-melting period and increased evapotranspiration in the growing period are the most important biogeophysical aspects induced by peatland forestation that cause changes in climate. The results from this study can be further integrally analysed with biogeochemical effects of peatland forestation to provide background information for adapting future forest management to mitigate climate warming effects. Moreover, they provide insights about the impacts of projected forestation of tundra at high latitudes due to climate change. Text Tundra Copernicus Publications: E-Journals Remo ENVELOPE(-128.718,-128.718,54.496,54.496) Biogeosciences 11 24 7251 7267
institution Open Polar
collection Copernicus Publications: E-Journals
op_collection_id ftcopernicus
language English
description Land cover changes can impact the climate by influencing the surface energy and water balance. Naturally treeless or sparsely treed peatlands were extensively drained to stimulate forest growth in Finland over the second half of 20th century. The aim of this study is to investigate the biogeophysical effects of peatland forestation on regional climate in Finland. Two sets of 18-year climate simulations were done with the regional climate model REMO by using land cover data based on pre-drainage (1920s) and post-drainage (2000s) Finnish national forest inventories. In the most intensive peatland forestation area, located in the middle west of Finland, the results show a warming in April of up to 0.43 K in monthly-averaged daily mean 2 m air temperature, whereas a slight cooling from May to October of less than 0.1 K in general is found. Consequently, snow clearance days over that area are advanced up to 5 days in the mean of 15 years. No clear signal is found for precipitation. Through analysing the simulated temperature and energy balance terms, as well as snow depth over five selected subregions, a positive feedback induced by peatland forestation is found between decreased surface albedo and increased surface air temperature in the snow-melting period. Our modelled results show good qualitative agreements with the observational data. In general, decreased surface albedo in the snow-melting period and increased evapotranspiration in the growing period are the most important biogeophysical aspects induced by peatland forestation that cause changes in climate. The results from this study can be further integrally analysed with biogeochemical effects of peatland forestation to provide background information for adapting future forest management to mitigate climate warming effects. Moreover, they provide insights about the impacts of projected forestation of tundra at high latitudes due to climate change.
format Text
author Gao, Y.
Markkanen, T.
Backman, L.
Henttonen, H. M.
Pietikäinen, J.-P.
Mäkelä, H. M.
Laaksonen, A.
spellingShingle Gao, Y.
Markkanen, T.
Backman, L.
Henttonen, H. M.
Pietikäinen, J.-P.
Mäkelä, H. M.
Laaksonen, A.
Biogeophysical impacts of peatland forestation on regional climate changes in Finland
author_facet Gao, Y.
Markkanen, T.
Backman, L.
Henttonen, H. M.
Pietikäinen, J.-P.
Mäkelä, H. M.
Laaksonen, A.
author_sort Gao, Y.
title Biogeophysical impacts of peatland forestation on regional climate changes in Finland
title_short Biogeophysical impacts of peatland forestation on regional climate changes in Finland
title_full Biogeophysical impacts of peatland forestation on regional climate changes in Finland
title_fullStr Biogeophysical impacts of peatland forestation on regional climate changes in Finland
title_full_unstemmed Biogeophysical impacts of peatland forestation on regional climate changes in Finland
title_sort biogeophysical impacts of peatland forestation on regional climate changes in finland
publishDate 2018
url https://doi.org/10.5194/bg-11-7251-2014
https://www.biogeosciences.net/11/7251/2014/
long_lat ENVELOPE(-128.718,-128.718,54.496,54.496)
geographic Remo
geographic_facet Remo
genre Tundra
genre_facet Tundra
op_source eISSN: 1726-4189
op_relation doi:10.5194/bg-11-7251-2014
https://www.biogeosciences.net/11/7251/2014/
op_doi https://doi.org/10.5194/bg-11-7251-2014
container_title Biogeosciences
container_volume 11
container_issue 24
container_start_page 7251
op_container_end_page 7267
_version_ 1766229999447179264