Factors promoting larch dominance in central Siberia: fire versus growth performance and implications for carbon dynamics at the boundary of evergreen and deciduous conifers

The relative role of fire and of climate in determining canopy species composition and aboveground carbon stocks were investigated. Measurements were made along a transect extending from the dark taiga zone of central Siberia, where Picea and Abies dominate the canopy, into the Larix zone of eastern...

Full description

Bibliographic Details
Published in:Biogeosciences
Main Authors: Schulze, E.-D., Wirth, C., Mollicone, D., Lüpke, N., Ziegler, W., Achard, F., Mund, M., Prokushkin, A., Scherbina, S.
Format: Text
Language:English
Published: 2018
Subjects:
Online Access:https://doi.org/10.5194/bg-9-1405-2012
https://www.biogeosciences.net/9/1405/2012/
id ftcopernicus:oai:publications.copernicus.org:bg13314
record_format openpolar
spelling ftcopernicus:oai:publications.copernicus.org:bg13314 2023-05-15T18:31:04+02:00 Factors promoting larch dominance in central Siberia: fire versus growth performance and implications for carbon dynamics at the boundary of evergreen and deciduous conifers Schulze, E.-D. Wirth, C. Mollicone, D. Lüpke, N. Ziegler, W. Achard, F. Mund, M. Prokushkin, A. Scherbina, S. 2018-09-27 application/pdf https://doi.org/10.5194/bg-9-1405-2012 https://www.biogeosciences.net/9/1405/2012/ eng eng doi:10.5194/bg-9-1405-2012 https://www.biogeosciences.net/9/1405/2012/ eISSN: 1726-4189 Text 2018 ftcopernicus https://doi.org/10.5194/bg-9-1405-2012 2019-12-24T09:56:20Z The relative role of fire and of climate in determining canopy species composition and aboveground carbon stocks were investigated. Measurements were made along a transect extending from the dark taiga zone of central Siberia, where Picea and Abies dominate the canopy, into the Larix zone of eastern Siberia. We test the hypotheses that the change in canopy species composition is based (1) on climate-driven performance only, (2) on fire only, or (3) on fire-performance interactions. We show that the evergreen conifers Picea obovata and Abies sibirica are the natural late-successional species both in central and eastern Siberia, provided there has been no fire for an extended period of time. There are no changes in performance of the observed species along the transect. Fire appears to be the main factor explaining the dominance of Larix and of soil carbon. Of lesser influence were longitude as a proxy for climate, local hydrology and active-layer thickness. We can only partially explain fire return frequency, which is not only related to climate and land cover, but also to human behavior. Stand-replacing fires decreased from 300 to 50 yrs between the Yenisei Ridge and the upper Tunguska. Repeated non-stand-replacing surface fires eliminated the regeneration of Abies and Picea . With every 100 yrs since the last fire, the percentage of Larix decreased by 20%. Biomass of stems of single trees did not show signs of age-related decline. Relative diameter increment was 0.41 ± 0.20% at breast height and stem volume increased linearly over time with a rate of about 0.36 t C ha −1 yr −1 independent of age class and species. Stand biomass reached about 130 t C ha −1 (equivalent to about 520 m 3 ha −1 ). Individual trees of Larix were older than 600 yrs. The maximum age and biomass seemed to be limited by fungal rot of heart wood. 60% of old Larix and Picea and 30% of Pinus sibirica trees were affected by stem rot. Implications for the future role of fire and of plant diseases are discussed. Text taiga Siberia Copernicus Publications: E-Journals Tunguska ENVELOPE(144.784,144.784,59.388,59.388) Biogeosciences 9 4 1405 1421
institution Open Polar
collection Copernicus Publications: E-Journals
op_collection_id ftcopernicus
language English
description The relative role of fire and of climate in determining canopy species composition and aboveground carbon stocks were investigated. Measurements were made along a transect extending from the dark taiga zone of central Siberia, where Picea and Abies dominate the canopy, into the Larix zone of eastern Siberia. We test the hypotheses that the change in canopy species composition is based (1) on climate-driven performance only, (2) on fire only, or (3) on fire-performance interactions. We show that the evergreen conifers Picea obovata and Abies sibirica are the natural late-successional species both in central and eastern Siberia, provided there has been no fire for an extended period of time. There are no changes in performance of the observed species along the transect. Fire appears to be the main factor explaining the dominance of Larix and of soil carbon. Of lesser influence were longitude as a proxy for climate, local hydrology and active-layer thickness. We can only partially explain fire return frequency, which is not only related to climate and land cover, but also to human behavior. Stand-replacing fires decreased from 300 to 50 yrs between the Yenisei Ridge and the upper Tunguska. Repeated non-stand-replacing surface fires eliminated the regeneration of Abies and Picea . With every 100 yrs since the last fire, the percentage of Larix decreased by 20%. Biomass of stems of single trees did not show signs of age-related decline. Relative diameter increment was 0.41 ± 0.20% at breast height and stem volume increased linearly over time with a rate of about 0.36 t C ha −1 yr −1 independent of age class and species. Stand biomass reached about 130 t C ha −1 (equivalent to about 520 m 3 ha −1 ). Individual trees of Larix were older than 600 yrs. The maximum age and biomass seemed to be limited by fungal rot of heart wood. 60% of old Larix and Picea and 30% of Pinus sibirica trees were affected by stem rot. Implications for the future role of fire and of plant diseases are discussed.
format Text
author Schulze, E.-D.
Wirth, C.
Mollicone, D.
Lüpke, N.
Ziegler, W.
Achard, F.
Mund, M.
Prokushkin, A.
Scherbina, S.
spellingShingle Schulze, E.-D.
Wirth, C.
Mollicone, D.
Lüpke, N.
Ziegler, W.
Achard, F.
Mund, M.
Prokushkin, A.
Scherbina, S.
Factors promoting larch dominance in central Siberia: fire versus growth performance and implications for carbon dynamics at the boundary of evergreen and deciduous conifers
author_facet Schulze, E.-D.
Wirth, C.
Mollicone, D.
Lüpke, N.
Ziegler, W.
Achard, F.
Mund, M.
Prokushkin, A.
Scherbina, S.
author_sort Schulze, E.-D.
title Factors promoting larch dominance in central Siberia: fire versus growth performance and implications for carbon dynamics at the boundary of evergreen and deciduous conifers
title_short Factors promoting larch dominance in central Siberia: fire versus growth performance and implications for carbon dynamics at the boundary of evergreen and deciduous conifers
title_full Factors promoting larch dominance in central Siberia: fire versus growth performance and implications for carbon dynamics at the boundary of evergreen and deciduous conifers
title_fullStr Factors promoting larch dominance in central Siberia: fire versus growth performance and implications for carbon dynamics at the boundary of evergreen and deciduous conifers
title_full_unstemmed Factors promoting larch dominance in central Siberia: fire versus growth performance and implications for carbon dynamics at the boundary of evergreen and deciduous conifers
title_sort factors promoting larch dominance in central siberia: fire versus growth performance and implications for carbon dynamics at the boundary of evergreen and deciduous conifers
publishDate 2018
url https://doi.org/10.5194/bg-9-1405-2012
https://www.biogeosciences.net/9/1405/2012/
long_lat ENVELOPE(144.784,144.784,59.388,59.388)
geographic Tunguska
geographic_facet Tunguska
genre taiga
Siberia
genre_facet taiga
Siberia
op_source eISSN: 1726-4189
op_relation doi:10.5194/bg-9-1405-2012
https://www.biogeosciences.net/9/1405/2012/
op_doi https://doi.org/10.5194/bg-9-1405-2012
container_title Biogeosciences
container_volume 9
container_issue 4
container_start_page 1405
op_container_end_page 1421
_version_ 1766214721249214464