Sea level variability at Adriatic coast and its relationship to atmospheric forcing

Sea level (SLH) variability at the Adriatic coast was investigated for the period 1872–2001 using monthly average values of observations at 13 tide gauge stations. Linear trends and seasonal cycles were investigated first and removed afterwards from the data. Empirical Orthogonal Functions (EOF) ana...

Full description

Bibliographic Details
Published in:Annales Geophysicae
Main Authors: Bergant, K., Sušnik, M., Strojan, I., Shaw, A. G. P.
Format: Text
Language:English
Published: 2018
Subjects:
Online Access:https://doi.org/10.5194/angeo-23-1997-2005
https://angeo.copernicus.org/articles/23/1997/2005/
id ftcopernicus:oai:publications.copernicus.org:angeo35643
record_format openpolar
spelling ftcopernicus:oai:publications.copernicus.org:angeo35643 2023-05-15T17:37:01+02:00 Sea level variability at Adriatic coast and its relationship to atmospheric forcing Bergant, K. Sušnik, M. Strojan, I. Shaw, A. G. P. 2018-09-27 application/pdf https://doi.org/10.5194/angeo-23-1997-2005 https://angeo.copernicus.org/articles/23/1997/2005/ eng eng doi:10.5194/angeo-23-1997-2005 https://angeo.copernicus.org/articles/23/1997/2005/ eISSN: 1432-0576 Text 2018 ftcopernicus https://doi.org/10.5194/angeo-23-1997-2005 2020-07-20T16:27:24Z Sea level (SLH) variability at the Adriatic coast was investigated for the period 1872–2001 using monthly average values of observations at 13 tide gauge stations. Linear trends and seasonal cycles were investigated first and removed afterwards from the data. Empirical Orthogonal Functions (EOF) analysis was used further on remaining anomalies (SLA) to extract the regional intermonthly variability of SLH. It was found that the leading EOF and its principal component (PC) explain a major part of SLA variability (92%). The correlation between the reconstructed SLA, based on leading EOF and its PC, and overlapping observed SLA values for selected tide gauge stations is between 0.93 and 0.99. Actual SLH values at tide gauge stations can be reconstructed and some gaps in the data can be filled in on the basis of estimated SLA values if reasonable estimates of long-term trends and seasonal cycles are also available. A strong, seasonally dependent relationship between SLA at the Adriatic coast and atmospheric forcing, represented by sea level pressure (SLP) fields, was also found. Comparing the time series of leading PC and gridded SLP data for the period 1948–2001, the highest correlation coefficients ( r ) of –0.92 in winter, –0.84 in spring, –0.66 in summer, and –0.91 in autumn were estimated for a SLP grid point located in northern Italy. The SLP variability on this grid point contains information about the isostatic response of the sea level at the Adriatic coast, but can also be treated as a sort of teleconnection index representing the large-scale SLP variability across central and southern Europe. To some extent the large-scale SLP variability that affects the SLA at the Adriatic coast can be related to the North Atlantic Oscillation (NAO), because significant correlations were found between the NAO index and the first PC of SLA ( r winter =–0.56, r spring =–0.45, r summer =–0.48, and r autumn =–0.43) for the period 1872–2001. The use of partial least-squares (PLS) regression between large-scale SLP fields and SLA only slightly improved the description of the SLA dependence on SLP forcing in comparison to the single grid point approach. A strong relationship between atmospheric pressure and the sea level could represent an additional possibility for filling in the gaps in the tide gauge data. Keywords. Oceanography: general (Climate and interannual variability) – Oceanography: physical (Air-sea interactions; sea level variations) Text North Atlantic North Atlantic oscillation Copernicus Publications: E-Journals Annales Geophysicae 23 6 1997 2010
institution Open Polar
collection Copernicus Publications: E-Journals
op_collection_id ftcopernicus
language English
description Sea level (SLH) variability at the Adriatic coast was investigated for the period 1872–2001 using monthly average values of observations at 13 tide gauge stations. Linear trends and seasonal cycles were investigated first and removed afterwards from the data. Empirical Orthogonal Functions (EOF) analysis was used further on remaining anomalies (SLA) to extract the regional intermonthly variability of SLH. It was found that the leading EOF and its principal component (PC) explain a major part of SLA variability (92%). The correlation between the reconstructed SLA, based on leading EOF and its PC, and overlapping observed SLA values for selected tide gauge stations is between 0.93 and 0.99. Actual SLH values at tide gauge stations can be reconstructed and some gaps in the data can be filled in on the basis of estimated SLA values if reasonable estimates of long-term trends and seasonal cycles are also available. A strong, seasonally dependent relationship between SLA at the Adriatic coast and atmospheric forcing, represented by sea level pressure (SLP) fields, was also found. Comparing the time series of leading PC and gridded SLP data for the period 1948–2001, the highest correlation coefficients ( r ) of –0.92 in winter, –0.84 in spring, –0.66 in summer, and –0.91 in autumn were estimated for a SLP grid point located in northern Italy. The SLP variability on this grid point contains information about the isostatic response of the sea level at the Adriatic coast, but can also be treated as a sort of teleconnection index representing the large-scale SLP variability across central and southern Europe. To some extent the large-scale SLP variability that affects the SLA at the Adriatic coast can be related to the North Atlantic Oscillation (NAO), because significant correlations were found between the NAO index and the first PC of SLA ( r winter =–0.56, r spring =–0.45, r summer =–0.48, and r autumn =–0.43) for the period 1872–2001. The use of partial least-squares (PLS) regression between large-scale SLP fields and SLA only slightly improved the description of the SLA dependence on SLP forcing in comparison to the single grid point approach. A strong relationship between atmospheric pressure and the sea level could represent an additional possibility for filling in the gaps in the tide gauge data. Keywords. Oceanography: general (Climate and interannual variability) – Oceanography: physical (Air-sea interactions; sea level variations)
format Text
author Bergant, K.
Sušnik, M.
Strojan, I.
Shaw, A. G. P.
spellingShingle Bergant, K.
Sušnik, M.
Strojan, I.
Shaw, A. G. P.
Sea level variability at Adriatic coast and its relationship to atmospheric forcing
author_facet Bergant, K.
Sušnik, M.
Strojan, I.
Shaw, A. G. P.
author_sort Bergant, K.
title Sea level variability at Adriatic coast and its relationship to atmospheric forcing
title_short Sea level variability at Adriatic coast and its relationship to atmospheric forcing
title_full Sea level variability at Adriatic coast and its relationship to atmospheric forcing
title_fullStr Sea level variability at Adriatic coast and its relationship to atmospheric forcing
title_full_unstemmed Sea level variability at Adriatic coast and its relationship to atmospheric forcing
title_sort sea level variability at adriatic coast and its relationship to atmospheric forcing
publishDate 2018
url https://doi.org/10.5194/angeo-23-1997-2005
https://angeo.copernicus.org/articles/23/1997/2005/
genre North Atlantic
North Atlantic oscillation
genre_facet North Atlantic
North Atlantic oscillation
op_source eISSN: 1432-0576
op_relation doi:10.5194/angeo-23-1997-2005
https://angeo.copernicus.org/articles/23/1997/2005/
op_doi https://doi.org/10.5194/angeo-23-1997-2005
container_title Annales Geophysicae
container_volume 23
container_issue 6
container_start_page 1997
op_container_end_page 2010
_version_ 1766136712446083072