Transient eastward-propagating long-period waves observed over the South Pole

Observations of the horizontal wind field over the South Pole were made during 1995 using a meteor radar. These data have revealed the presence of a rich spectrum of waves over the South Pole with a distinct annual occurrence. Included in this spectrum are long-period waves, whose periods are greate...

Full description

Bibliographic Details
Published in:Annales Geophysicae
Main Authors: Palo, S. E., Portnyagin, Y. I., Forbes, J. M., Makarov, N. A., Merzlyakov, E. G.
Format: Text
Language:English
Published: 2018
Subjects:
Online Access:https://doi.org/10.1007/s00585-998-1486-7
https://angeo.copernicus.org/articles/16/1486/1998/
id ftcopernicus:oai:publications.copernicus.org:angeo34243
record_format openpolar
spelling ftcopernicus:oai:publications.copernicus.org:angeo34243 2023-05-15T18:21:51+02:00 Transient eastward-propagating long-period waves observed over the South Pole Palo, S. E. Portnyagin, Y. I. Forbes, J. M. Makarov, N. A. Merzlyakov, E. G. 2018-09-27 application/pdf https://doi.org/10.1007/s00585-998-1486-7 https://angeo.copernicus.org/articles/16/1486/1998/ eng eng doi:10.1007/s00585-998-1486-7 https://angeo.copernicus.org/articles/16/1486/1998/ eISSN: 1432-0576 Text 2018 ftcopernicus https://doi.org/10.1007/s00585-998-1486-7 2020-07-20T16:28:05Z Observations of the horizontal wind field over the South Pole were made during 1995 using a meteor radar. These data have revealed the presence of a rich spectrum of waves over the South Pole with a distinct annual occurrence. Included in this spectrum are long-period waves, whose periods are greater than one solar day, which are propagating eastward. These waves exhibit a distinct seasonal occurrence where the envelope of wave periods decreases from a period of 10 days near the fall equinox to a minimum of 2 days near the winter solstice and then progresses towards a period near 10 days at the spring equinox. Computation of the meridional gradient of quasi-geostrophic potential vorticity has revealed a region in the high-latitude upper mesosphere which could support an instability and serve as a source for these waves. Estimation of the wave periods which would be generated from an instability in this region closely resembles the observed seasonal variation in wave periods over the South Pole. These results are consistent with the hypothesis that the observed eastward propagating long-period waves over the South Pole are generated by an instability in the polar upper mesosphere. However, given our limited data set we cannot rule out a stratospheric source. Embedded in this spectrum of eastward propagating waves during the austral winter are a number of distinct wave events. Eight such wave events have been identified and localized using a constant- Q filter bank. The periods of these wave events ranges from 1.7 to 9.8 days and all exist for at least 3 wave periods. Least squares analysis has revealed that a number of these events are inconsistent with a wave propagating zonally around the geographic pole and could be related to waves propagating around a dynamical pole which is offset from the geographic pole. Additionally, one event which was observed appears to be a standing oscillation. Key words. Meteorology and atmospheric dynamics (Middle atmospheric dynamics; waves and tides). Text South pole Copernicus Publications: E-Journals Austral South Pole Annales Geophysicae 16 11 1486 1500
institution Open Polar
collection Copernicus Publications: E-Journals
op_collection_id ftcopernicus
language English
description Observations of the horizontal wind field over the South Pole were made during 1995 using a meteor radar. These data have revealed the presence of a rich spectrum of waves over the South Pole with a distinct annual occurrence. Included in this spectrum are long-period waves, whose periods are greater than one solar day, which are propagating eastward. These waves exhibit a distinct seasonal occurrence where the envelope of wave periods decreases from a period of 10 days near the fall equinox to a minimum of 2 days near the winter solstice and then progresses towards a period near 10 days at the spring equinox. Computation of the meridional gradient of quasi-geostrophic potential vorticity has revealed a region in the high-latitude upper mesosphere which could support an instability and serve as a source for these waves. Estimation of the wave periods which would be generated from an instability in this region closely resembles the observed seasonal variation in wave periods over the South Pole. These results are consistent with the hypothesis that the observed eastward propagating long-period waves over the South Pole are generated by an instability in the polar upper mesosphere. However, given our limited data set we cannot rule out a stratospheric source. Embedded in this spectrum of eastward propagating waves during the austral winter are a number of distinct wave events. Eight such wave events have been identified and localized using a constant- Q filter bank. The periods of these wave events ranges from 1.7 to 9.8 days and all exist for at least 3 wave periods. Least squares analysis has revealed that a number of these events are inconsistent with a wave propagating zonally around the geographic pole and could be related to waves propagating around a dynamical pole which is offset from the geographic pole. Additionally, one event which was observed appears to be a standing oscillation. Key words. Meteorology and atmospheric dynamics (Middle atmospheric dynamics; waves and tides).
format Text
author Palo, S. E.
Portnyagin, Y. I.
Forbes, J. M.
Makarov, N. A.
Merzlyakov, E. G.
spellingShingle Palo, S. E.
Portnyagin, Y. I.
Forbes, J. M.
Makarov, N. A.
Merzlyakov, E. G.
Transient eastward-propagating long-period waves observed over the South Pole
author_facet Palo, S. E.
Portnyagin, Y. I.
Forbes, J. M.
Makarov, N. A.
Merzlyakov, E. G.
author_sort Palo, S. E.
title Transient eastward-propagating long-period waves observed over the South Pole
title_short Transient eastward-propagating long-period waves observed over the South Pole
title_full Transient eastward-propagating long-period waves observed over the South Pole
title_fullStr Transient eastward-propagating long-period waves observed over the South Pole
title_full_unstemmed Transient eastward-propagating long-period waves observed over the South Pole
title_sort transient eastward-propagating long-period waves observed over the south pole
publishDate 2018
url https://doi.org/10.1007/s00585-998-1486-7
https://angeo.copernicus.org/articles/16/1486/1998/
geographic Austral
South Pole
geographic_facet Austral
South Pole
genre South pole
genre_facet South pole
op_source eISSN: 1432-0576
op_relation doi:10.1007/s00585-998-1486-7
https://angeo.copernicus.org/articles/16/1486/1998/
op_doi https://doi.org/10.1007/s00585-998-1486-7
container_title Annales Geophysicae
container_volume 16
container_issue 11
container_start_page 1486
op_container_end_page 1500
_version_ 1766201180400123904