ERUO: a spectral processing routine for the MRR-PRO

The Micro Rain Radar (MRR) PRO is a K-band Doppler weather radar, using frequency modulated continuous wave (FMCW) signals, developed by Metek Meteorologische Messtechnik GmbH (Metek) as successor to the MRR-2. Benefiting from four datasets collected during two field campaigns in Antarctica and Swit...

Full description

Bibliographic Details
Main Authors: Ferrone, Alfonso, Billault-Roux, Anne-Claire Marie, Berne, Alexis
Format: Text
Language:English
Published: 2021
Subjects:
Online Access:https://doi.org/10.5194/amt-2021-294
https://amt.copernicus.org/preprints/amt-2021-294/
Description
Summary:The Micro Rain Radar (MRR) PRO is a K-band Doppler weather radar, using frequency modulated continuous wave (FMCW) signals, developed by Metek Meteorologische Messtechnik GmbH (Metek) as successor to the MRR-2. Benefiting from four datasets collected during two field campaigns in Antarctica and Switzerland, we developed a processing library for snowfall measurements, named ERUO (Enhancement and Reconstruction of the spectrUm for the MRR-PRO), with a two-fold objective. Firstly, the proposed method addresses a series of issues plaguing the radar variables, which include interference lines, power drops at the extremes of the Doppler spectrum and abrupt cutoff of the transfer function. Secondly, the algorithm aims to improve the quality of the final variables, by lowering the minimum detectable equivalent attenuated reflectivity factor and extending the valid Doppler velocity range through antialiasing. The performance of the algorithm has been tested against the measurements of a co-located W-band Doppler radar. Information from a close-by X-Band Doppler dual-polarization radar has been used to exclude unsuitable radar volumes from the comparison. Particular attention has been dedicated to verify the estimation of the meteorological signal in the spectra covered by interferences.