Dried, closed-path eddy covariance method for measuring carbon dioxide flux over sea ice

The Arctic marine environment plays an important role in the global carbon cycle. However, there remain large uncertainties in how sea ice affects air–sea fluxes of carbon dioxide ( CO 2 ), partially due to disagreement between the two main methods (enclosure and eddy covariance) for measuring CO 2...

Full description

Bibliographic Details
Published in:Atmospheric Measurement Techniques
Main Authors: Butterworth, Brian J., Else, Brent G. T.
Format: Text
Language:English
Published: 2019
Subjects:
Online Access:https://doi.org/10.5194/amt-11-6075-2018
https://amt.copernicus.org/articles/11/6075/2018/
id ftcopernicus:oai:publications.copernicus.org:amt68878
record_format openpolar
institution Open Polar
collection Copernicus Publications: E-Journals
op_collection_id ftcopernicus
language English
description The Arctic marine environment plays an important role in the global carbon cycle. However, there remain large uncertainties in how sea ice affects air–sea fluxes of carbon dioxide ( CO 2 ), partially due to disagreement between the two main methods (enclosure and eddy covariance) for measuring CO 2 flux ( <math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msub><mi>F</mi><mrow><mi mathvariant="normal">CO</mi><msub><mi/><mn mathvariant="normal">2</mn></msub></mrow></msub></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="6b8cbfd9be1fe094f1cc39ba3389da73"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-11-6075-2018-ie00001.svg" width="23pt" height="14pt" src="amt-11-6075-2018-ie00001.png"/></svg:svg> ). The enclosure method has appeared to produce more credible <math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msub><mi>F</mi><mrow><mi mathvariant="normal">CO</mi><msub><mi/><mn mathvariant="normal">2</mn></msub></mrow></msub></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="647cda4c1184e3ee1e2e34e33689234d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-11-6075-2018-ie00002.svg" width="23pt" height="14pt" src="amt-11-6075-2018-ie00002.png"/></svg:svg> than eddy covariance (EC), but is not suited for collecting long-term, ecosystem-scale flux datasets in such remote regions. Here we describe the design and performance of an EC system to measure <math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msub><mi>F</mi><mrow><mi mathvariant="normal">CO</mi><msub><mi/><mn mathvariant="normal">2</mn></msub></mrow></msub></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="0632e7a6a53d08c3ed8efc4956b7f74c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-11-6075-2018-ie00003.svg" width="23pt" height="14pt" src="amt-11-6075-2018-ie00003.png"/></svg:svg> over landfast sea ice that addresses the shortcomings of previous EC systems. The system was installed on a 10 m tower on Qikirtaarjuk Island – a small rock outcrop in Dease Strait located roughly 35 km west of Cambridge Bay, Nunavut, in the Canadian Arctic Archipelago. The system incorporates recent developments in the field of air–sea gas exchange by measuring atmospheric CO 2 using a closed-path infrared gas analyzer (IRGA) with a dried sample airstream, thus avoiding the known water vapor issues associated with using open-path IRGAs in low-flux environments. A description of the methods and the results from 4 months of continuous flux measurements from May through August 2017 are presented, highlighting the winter to summer transition from ice cover to open water. We show that the dried, closed-path EC system greatly reduces the magnitude of measured <math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msub><mi>F</mi><mrow><mi mathvariant="normal">CO</mi><msub><mi/><mn mathvariant="normal">2</mn></msub></mrow></msub></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="201812cb0124c03de581e702a3f1399b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-11-6075-2018-ie00004.svg" width="23pt" height="14pt" src="amt-11-6075-2018-ie00004.png"/></svg:svg> compared to simultaneous open-path EC measurements, and for the first time reconciles EC and enclosure flux measurements over sea ice. This novel EC installation is capable of operating year-round on solar and wind power, and therefore promises to deliver new insights into the magnitude of CO 2 fluxes and their driving processes through the annual sea ice cycle.
format Text
author Butterworth, Brian J.
Else, Brent G. T.
spellingShingle Butterworth, Brian J.
Else, Brent G. T.
Dried, closed-path eddy covariance method for measuring carbon dioxide flux over sea ice
author_facet Butterworth, Brian J.
Else, Brent G. T.
author_sort Butterworth, Brian J.
title Dried, closed-path eddy covariance method for measuring carbon dioxide flux over sea ice
title_short Dried, closed-path eddy covariance method for measuring carbon dioxide flux over sea ice
title_full Dried, closed-path eddy covariance method for measuring carbon dioxide flux over sea ice
title_fullStr Dried, closed-path eddy covariance method for measuring carbon dioxide flux over sea ice
title_full_unstemmed Dried, closed-path eddy covariance method for measuring carbon dioxide flux over sea ice
title_sort dried, closed-path eddy covariance method for measuring carbon dioxide flux over sea ice
publishDate 2019
url https://doi.org/10.5194/amt-11-6075-2018
https://amt.copernicus.org/articles/11/6075/2018/
long_lat ENVELOPE(-105.130,-105.130,69.037,69.037)
ENVELOPE(-107.502,-107.502,68.834,68.834)
ENVELOPE(-115.020,-115.020,69.251,69.251)
ENVELOPE(-45.592,-45.592,-60.702,-60.702)
geographic Arctic
Cambridge Bay
Canadian Arctic Archipelago
Dease Strait
Nunavut
Qikirtaarjuk Island
Small Rock
geographic_facet Arctic
Cambridge Bay
Canadian Arctic Archipelago
Dease Strait
Nunavut
Qikirtaarjuk Island
Small Rock
genre Arctic Archipelago
Arctic
Cambridge Bay
Canadian Arctic Archipelago
Nunavut
Sea ice
genre_facet Arctic Archipelago
Arctic
Cambridge Bay
Canadian Arctic Archipelago
Nunavut
Sea ice
op_source eISSN: 1867-8548
op_relation doi:10.5194/amt-11-6075-2018
https://amt.copernicus.org/articles/11/6075/2018/
op_doi https://doi.org/10.5194/amt-11-6075-2018
container_title Atmospheric Measurement Techniques
container_volume 11
container_issue 11
container_start_page 6075
op_container_end_page 6090
_version_ 1766303160148688896
spelling ftcopernicus:oai:publications.copernicus.org:amt68878 2023-05-15T14:29:04+02:00 Dried, closed-path eddy covariance method for measuring carbon dioxide flux over sea ice Butterworth, Brian J. Else, Brent G. T. 2019-01-04 application/pdf https://doi.org/10.5194/amt-11-6075-2018 https://amt.copernicus.org/articles/11/6075/2018/ eng eng doi:10.5194/amt-11-6075-2018 https://amt.copernicus.org/articles/11/6075/2018/ eISSN: 1867-8548 Text 2019 ftcopernicus https://doi.org/10.5194/amt-11-6075-2018 2020-07-20T16:23:04Z The Arctic marine environment plays an important role in the global carbon cycle. However, there remain large uncertainties in how sea ice affects air–sea fluxes of carbon dioxide ( CO 2 ), partially due to disagreement between the two main methods (enclosure and eddy covariance) for measuring CO 2 flux ( <math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msub><mi>F</mi><mrow><mi mathvariant="normal">CO</mi><msub><mi/><mn mathvariant="normal">2</mn></msub></mrow></msub></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="6b8cbfd9be1fe094f1cc39ba3389da73"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-11-6075-2018-ie00001.svg" width="23pt" height="14pt" src="amt-11-6075-2018-ie00001.png"/></svg:svg> ). The enclosure method has appeared to produce more credible <math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msub><mi>F</mi><mrow><mi mathvariant="normal">CO</mi><msub><mi/><mn mathvariant="normal">2</mn></msub></mrow></msub></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="647cda4c1184e3ee1e2e34e33689234d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-11-6075-2018-ie00002.svg" width="23pt" height="14pt" src="amt-11-6075-2018-ie00002.png"/></svg:svg> than eddy covariance (EC), but is not suited for collecting long-term, ecosystem-scale flux datasets in such remote regions. Here we describe the design and performance of an EC system to measure <math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msub><mi>F</mi><mrow><mi mathvariant="normal">CO</mi><msub><mi/><mn mathvariant="normal">2</mn></msub></mrow></msub></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="0632e7a6a53d08c3ed8efc4956b7f74c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-11-6075-2018-ie00003.svg" width="23pt" height="14pt" src="amt-11-6075-2018-ie00003.png"/></svg:svg> over landfast sea ice that addresses the shortcomings of previous EC systems. The system was installed on a 10 m tower on Qikirtaarjuk Island – a small rock outcrop in Dease Strait located roughly 35 km west of Cambridge Bay, Nunavut, in the Canadian Arctic Archipelago. The system incorporates recent developments in the field of air–sea gas exchange by measuring atmospheric CO 2 using a closed-path infrared gas analyzer (IRGA) with a dried sample airstream, thus avoiding the known water vapor issues associated with using open-path IRGAs in low-flux environments. A description of the methods and the results from 4 months of continuous flux measurements from May through August 2017 are presented, highlighting the winter to summer transition from ice cover to open water. We show that the dried, closed-path EC system greatly reduces the magnitude of measured <math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msub><mi>F</mi><mrow><mi mathvariant="normal">CO</mi><msub><mi/><mn mathvariant="normal">2</mn></msub></mrow></msub></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="201812cb0124c03de581e702a3f1399b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-11-6075-2018-ie00004.svg" width="23pt" height="14pt" src="amt-11-6075-2018-ie00004.png"/></svg:svg> compared to simultaneous open-path EC measurements, and for the first time reconciles EC and enclosure flux measurements over sea ice. This novel EC installation is capable of operating year-round on solar and wind power, and therefore promises to deliver new insights into the magnitude of CO 2 fluxes and their driving processes through the annual sea ice cycle. Text Arctic Archipelago Arctic Cambridge Bay Canadian Arctic Archipelago Nunavut Sea ice Copernicus Publications: E-Journals Arctic Cambridge Bay ENVELOPE(-105.130,-105.130,69.037,69.037) Canadian Arctic Archipelago Dease Strait ENVELOPE(-107.502,-107.502,68.834,68.834) Nunavut Qikirtaarjuk Island ENVELOPE(-115.020,-115.020,69.251,69.251) Small Rock ENVELOPE(-45.592,-45.592,-60.702,-60.702) Atmospheric Measurement Techniques 11 11 6075 6090