Simultaneous and co-located wind measurements in the middle atmosphere by lidar and rocket-borne techniques

We present the first comparison of a new lidar technique to measure winds in the middle atmosphere, called DoRIS (Doppler Rayleigh Iodine Spectrometer), with a rocket-borne in situ method, which relies on measuring the horizontal drift of a target (“starute”) by a tracking radar. The launches took p...

Full description

Bibliographic Details
Published in:Atmospheric Measurement Techniques
Main Authors: Lübken, Franz-Josef, Baumgarten, Gerd, Hildebrand, Jens, Schmidlin, Francis J.
Format: Text
Language:English
Published: 2018
Subjects:
Online Access:https://doi.org/10.5194/amt-9-3911-2016
https://amt.copernicus.org/articles/9/3911/2016/
id ftcopernicus:oai:publications.copernicus.org:amt50586
record_format openpolar
spelling ftcopernicus:oai:publications.copernicus.org:amt50586 2023-05-15T13:25:44+02:00 Simultaneous and co-located wind measurements in the middle atmosphere by lidar and rocket-borne techniques Lübken, Franz-Josef Baumgarten, Gerd Hildebrand, Jens Schmidlin, Francis J. 2018-01-15 application/pdf https://doi.org/10.5194/amt-9-3911-2016 https://amt.copernicus.org/articles/9/3911/2016/ eng eng doi:10.5194/amt-9-3911-2016 https://amt.copernicus.org/articles/9/3911/2016/ eISSN: 1867-8548 Text 2018 ftcopernicus https://doi.org/10.5194/amt-9-3911-2016 2020-07-20T16:24:02Z We present the first comparison of a new lidar technique to measure winds in the middle atmosphere, called DoRIS (Doppler Rayleigh Iodine Spectrometer), with a rocket-borne in situ method, which relies on measuring the horizontal drift of a target (“starute”) by a tracking radar. The launches took place from the Andøya Space Center (ASC), very close to the ALOMAR observatory (Arctic Lidar Observatory for Middle Atmosphere Research) at 69° N. DoRIS is part of a steerable twin lidar system installed at ALOMAR. The observations were made simultaneously and with a horizontal distance between the two lidar beams and the starute trajectories of typically 0–40 km only. DoRIS measured winds from 14 March 2015, 17:00 UTC, to 15 March 2015, 11:30 UTC. A total of eight starute flights were launched successfully from 14 March, 19:00 UTC, to 15 March, 00:19 UTC. In general there is excellent agreement between DoRIS and the in situ measurements, considering the combined range of uncertainties. This concerns not only the general height structures of zonal and meridional winds and their temporal developments, but also some wavy structures. Considering the comparison between all starute flights and all DoRIS observations in a time period of ±20 min around each individual starute flight, we arrive at mean differences of typically ±5–10 m s −1 for both wind components. Part of the remaining differences are most likely due to the detection of different wave fronts of gravity waves. There is no systematic difference between DoRIS and the in situ observations above 30 km. Below ∼ 30 km, winds from DoRIS are systematically too large by up to 10–20 m s −1 , which can be explained by the presence of aerosols. This is proven by deriving the backscatter ratios at two different wavelengths. These ratios are larger than unity, which is an indication of the presence of aerosols. Text Andøya Arctic Copernicus Publications: E-Journals Alomar ENVELOPE(-67.083,-67.083,-68.133,-68.133) Andøya ENVELOPE(13.982,13.982,68.185,68.185) Arctic Atmospheric Measurement Techniques 9 8 3911 3919
institution Open Polar
collection Copernicus Publications: E-Journals
op_collection_id ftcopernicus
language English
description We present the first comparison of a new lidar technique to measure winds in the middle atmosphere, called DoRIS (Doppler Rayleigh Iodine Spectrometer), with a rocket-borne in situ method, which relies on measuring the horizontal drift of a target (“starute”) by a tracking radar. The launches took place from the Andøya Space Center (ASC), very close to the ALOMAR observatory (Arctic Lidar Observatory for Middle Atmosphere Research) at 69° N. DoRIS is part of a steerable twin lidar system installed at ALOMAR. The observations were made simultaneously and with a horizontal distance between the two lidar beams and the starute trajectories of typically 0–40 km only. DoRIS measured winds from 14 March 2015, 17:00 UTC, to 15 March 2015, 11:30 UTC. A total of eight starute flights were launched successfully from 14 March, 19:00 UTC, to 15 March, 00:19 UTC. In general there is excellent agreement between DoRIS and the in situ measurements, considering the combined range of uncertainties. This concerns not only the general height structures of zonal and meridional winds and their temporal developments, but also some wavy structures. Considering the comparison between all starute flights and all DoRIS observations in a time period of ±20 min around each individual starute flight, we arrive at mean differences of typically ±5–10 m s −1 for both wind components. Part of the remaining differences are most likely due to the detection of different wave fronts of gravity waves. There is no systematic difference between DoRIS and the in situ observations above 30 km. Below ∼ 30 km, winds from DoRIS are systematically too large by up to 10–20 m s −1 , which can be explained by the presence of aerosols. This is proven by deriving the backscatter ratios at two different wavelengths. These ratios are larger than unity, which is an indication of the presence of aerosols.
format Text
author Lübken, Franz-Josef
Baumgarten, Gerd
Hildebrand, Jens
Schmidlin, Francis J.
spellingShingle Lübken, Franz-Josef
Baumgarten, Gerd
Hildebrand, Jens
Schmidlin, Francis J.
Simultaneous and co-located wind measurements in the middle atmosphere by lidar and rocket-borne techniques
author_facet Lübken, Franz-Josef
Baumgarten, Gerd
Hildebrand, Jens
Schmidlin, Francis J.
author_sort Lübken, Franz-Josef
title Simultaneous and co-located wind measurements in the middle atmosphere by lidar and rocket-borne techniques
title_short Simultaneous and co-located wind measurements in the middle atmosphere by lidar and rocket-borne techniques
title_full Simultaneous and co-located wind measurements in the middle atmosphere by lidar and rocket-borne techniques
title_fullStr Simultaneous and co-located wind measurements in the middle atmosphere by lidar and rocket-borne techniques
title_full_unstemmed Simultaneous and co-located wind measurements in the middle atmosphere by lidar and rocket-borne techniques
title_sort simultaneous and co-located wind measurements in the middle atmosphere by lidar and rocket-borne techniques
publishDate 2018
url https://doi.org/10.5194/amt-9-3911-2016
https://amt.copernicus.org/articles/9/3911/2016/
long_lat ENVELOPE(-67.083,-67.083,-68.133,-68.133)
ENVELOPE(13.982,13.982,68.185,68.185)
geographic Alomar
Andøya
Arctic
geographic_facet Alomar
Andøya
Arctic
genre Andøya
Arctic
genre_facet Andøya
Arctic
op_source eISSN: 1867-8548
op_relation doi:10.5194/amt-9-3911-2016
https://amt.copernicus.org/articles/9/3911/2016/
op_doi https://doi.org/10.5194/amt-9-3911-2016
container_title Atmospheric Measurement Techniques
container_volume 9
container_issue 8
container_start_page 3911
op_container_end_page 3919
_version_ 1766387602282250240