Trend analysis of aerosol optical thickness and Ångström exponent derived from the global AERONET spectral observations
Regular aerosol observations based on well-calibrated instruments have led to a better understanding of the aerosol radiative budget on Earth. In recent years, these instruments have played an important role in the determination of the increase of anthropogenic aerosols by means of long-term studies...
Published in: | Atmospheric Measurement Techniques |
---|---|
Main Authors: | , , , , |
Format: | Text |
Language: | English |
Published: |
2018
|
Subjects: | |
Online Access: | https://doi.org/10.5194/amt-5-1271-2012 https://amt.copernicus.org/articles/5/1271/2012/ |
id |
ftcopernicus:oai:publications.copernicus.org:amt12243 |
---|---|
record_format |
openpolar |
spelling |
ftcopernicus:oai:publications.copernicus.org:amt12243 2023-05-15T13:06:35+02:00 Trend analysis of aerosol optical thickness and Ångström exponent derived from the global AERONET spectral observations Yoon, J. Hoyningen-Huene, W. Kokhanovsky, A. A. Vountas, M. Burrows, J. P. 2018-01-15 application/pdf https://doi.org/10.5194/amt-5-1271-2012 https://amt.copernicus.org/articles/5/1271/2012/ eng eng doi:10.5194/amt-5-1271-2012 https://amt.copernicus.org/articles/5/1271/2012/ eISSN: 1867-8548 Text 2018 ftcopernicus https://doi.org/10.5194/amt-5-1271-2012 2020-07-20T16:25:48Z Regular aerosol observations based on well-calibrated instruments have led to a better understanding of the aerosol radiative budget on Earth. In recent years, these instruments have played an important role in the determination of the increase of anthropogenic aerosols by means of long-term studies. Only few investigations regarding long-term trends of aerosol optical characteristics (e.g. aerosol optical thickness (AOT) and Ångström exponent (ÅE)) have been derived from ground-based observations. This paper aims to derive and discuss linear trends of AOT (440, 675, 870, and 1020 nm) and ÅE (440–870 nm) using AErosol RObotic NETwork (AERONET) level 2.0 spectral observations. Additionally, temporal trends of coarse- and fine-mode dominant AOTs (CdAOT and FdAOT) have been estimated by applying an aerosol classification based on accurate ÅE and Ångström exponent difference (ÅED). In order to take into account the fact that cloud disturbance is having a significant influence on the trend analysis of aerosols, we introduce a weighted least squares regression depending on two weights: (1) monthly standard deviation (σ t ) and (2) number of observations per month ( n t ). Temporal increase of FdAOTs (440 nm) prevails over newly industrializing countries in East Asia (weighted trends; +6.23% yr −1 at Beijing) and active agricultural burning regions in South Africa (+1.89% yr −1 at Mongu). On the other hand, insignificant or negative trends for FdAOTs are detected over Western Europe (+0.25% yr −1 at Avignon and −2.29% yr −1 at Ispra) and North America (−0.52% yr −1 for GSFC and −0.01% yr −1 at MD_Science_Center). Over desert regions, both increase and decrease of CdAOTs (+3.37% yr −1 at Solar_Village and −1.18% yr −1 at Ouagadougou) are observed depending on meteorological conditions. Text Aerosol Robotic Network Copernicus Publications: E-Journals Atmospheric Measurement Techniques 5 6 1271 1299 |
institution |
Open Polar |
collection |
Copernicus Publications: E-Journals |
op_collection_id |
ftcopernicus |
language |
English |
description |
Regular aerosol observations based on well-calibrated instruments have led to a better understanding of the aerosol radiative budget on Earth. In recent years, these instruments have played an important role in the determination of the increase of anthropogenic aerosols by means of long-term studies. Only few investigations regarding long-term trends of aerosol optical characteristics (e.g. aerosol optical thickness (AOT) and Ångström exponent (ÅE)) have been derived from ground-based observations. This paper aims to derive and discuss linear trends of AOT (440, 675, 870, and 1020 nm) and ÅE (440–870 nm) using AErosol RObotic NETwork (AERONET) level 2.0 spectral observations. Additionally, temporal trends of coarse- and fine-mode dominant AOTs (CdAOT and FdAOT) have been estimated by applying an aerosol classification based on accurate ÅE and Ångström exponent difference (ÅED). In order to take into account the fact that cloud disturbance is having a significant influence on the trend analysis of aerosols, we introduce a weighted least squares regression depending on two weights: (1) monthly standard deviation (σ t ) and (2) number of observations per month ( n t ). Temporal increase of FdAOTs (440 nm) prevails over newly industrializing countries in East Asia (weighted trends; +6.23% yr −1 at Beijing) and active agricultural burning regions in South Africa (+1.89% yr −1 at Mongu). On the other hand, insignificant or negative trends for FdAOTs are detected over Western Europe (+0.25% yr −1 at Avignon and −2.29% yr −1 at Ispra) and North America (−0.52% yr −1 for GSFC and −0.01% yr −1 at MD_Science_Center). Over desert regions, both increase and decrease of CdAOTs (+3.37% yr −1 at Solar_Village and −1.18% yr −1 at Ouagadougou) are observed depending on meteorological conditions. |
format |
Text |
author |
Yoon, J. Hoyningen-Huene, W. Kokhanovsky, A. A. Vountas, M. Burrows, J. P. |
spellingShingle |
Yoon, J. Hoyningen-Huene, W. Kokhanovsky, A. A. Vountas, M. Burrows, J. P. Trend analysis of aerosol optical thickness and Ångström exponent derived from the global AERONET spectral observations |
author_facet |
Yoon, J. Hoyningen-Huene, W. Kokhanovsky, A. A. Vountas, M. Burrows, J. P. |
author_sort |
Yoon, J. |
title |
Trend analysis of aerosol optical thickness and Ångström exponent derived from the global AERONET spectral observations |
title_short |
Trend analysis of aerosol optical thickness and Ångström exponent derived from the global AERONET spectral observations |
title_full |
Trend analysis of aerosol optical thickness and Ångström exponent derived from the global AERONET spectral observations |
title_fullStr |
Trend analysis of aerosol optical thickness and Ångström exponent derived from the global AERONET spectral observations |
title_full_unstemmed |
Trend analysis of aerosol optical thickness and Ångström exponent derived from the global AERONET spectral observations |
title_sort |
trend analysis of aerosol optical thickness and ångström exponent derived from the global aeronet spectral observations |
publishDate |
2018 |
url |
https://doi.org/10.5194/amt-5-1271-2012 https://amt.copernicus.org/articles/5/1271/2012/ |
genre |
Aerosol Robotic Network |
genre_facet |
Aerosol Robotic Network |
op_source |
eISSN: 1867-8548 |
op_relation |
doi:10.5194/amt-5-1271-2012 https://amt.copernicus.org/articles/5/1271/2012/ |
op_doi |
https://doi.org/10.5194/amt-5-1271-2012 |
container_title |
Atmospheric Measurement Techniques |
container_volume |
5 |
container_issue |
6 |
container_start_page |
1271 |
op_container_end_page |
1299 |
_version_ |
1766012092472623104 |