Australian wildfire smoke in the stratosphere: the decay phase in 2020/21 and impact on ozone depletion

Record-breaking wildfires raged in southeastern Australia in late December 2019 and early January 2020. Rather strong pyrocumulonimbus (pyroCb) convection developed over the fire areas and lifted enormous amounts of biomass-burning smoke into the tropopause region and caused the strongest wildfire-r...

Full description

Bibliographic Details
Main Authors: Ohneiser, Kevin, Ansmann, Albert, Kaifler, Bernd, Chudnovsky, Alexandra, Barja, Boris, Knopf, Daniel A., Kaifler, Natalie, Baars, Holger, Seifert, Patric, Villanueva, Diego, Jimenez, Cristofer, Radenz, Martin, Engelmann, Ronny, Veselovskii, Igor, Zamorano, Felix
Format: Text
Language:English
Published: 2022
Subjects:
Online Access:https://doi.org/10.5194/acp-2021-1097
https://acp.copernicus.org/preprints/acp-2021-1097/
id ftcopernicus:oai:publications.copernicus.org:acpd100535
record_format openpolar
spelling ftcopernicus:oai:publications.copernicus.org:acpd100535 2023-05-15T14:02:17+02:00 Australian wildfire smoke in the stratosphere: the decay phase in 2020/21 and impact on ozone depletion Ohneiser, Kevin Ansmann, Albert Kaifler, Bernd Chudnovsky, Alexandra Barja, Boris Knopf, Daniel A. Kaifler, Natalie Baars, Holger Seifert, Patric Villanueva, Diego Jimenez, Cristofer Radenz, Martin Engelmann, Ronny Veselovskii, Igor Zamorano, Felix 2022-01-18 application/pdf https://doi.org/10.5194/acp-2021-1097 https://acp.copernicus.org/preprints/acp-2021-1097/ eng eng doi:10.5194/acp-2021-1097 https://acp.copernicus.org/preprints/acp-2021-1097/ eISSN: 1680-7324 Text 2022 ftcopernicus https://doi.org/10.5194/acp-2021-1097 2022-01-24T17:22:16Z Record-breaking wildfires raged in southeastern Australia in late December 2019 and early January 2020. Rather strong pyrocumulonimbus (pyroCb) convection developed over the fire areas and lifted enormous amounts of biomass-burning smoke into the tropopause region and caused the strongest wildfire-related stratospheric aerosol perturbation ever observed around the globe. We discuss the geometrical, optical, and microphyscial properties of the stratospheric smoke layers and the decay of this major stratospheric perturbation. A multiwavelength polarization Raman lidar at Punta Arenas (53.2° S, 70.9° W), southern Chile, and an elastic-backscatter Raman lidar at Río Grande (53.8° S, 67.7° W) in southern Argentina were operated to monitor the major record-breaking event until the end of 2021. These lidar measurements can be regarded as representative for mid to high latitudes in the Southern Hemisphere. A unique dynamical feature, an anticyclonic, smoke-filled vortex with 1000 km horizontal width and 5 km vertical extent, which ascended by about 500 m per day, was observed over the full last week of January 2020. The key results of the long-term study are as follows: The smoke layers extended, on average, from 9 to 24 km in height. The smoke partly ascended to more than 30 km height as a result of self-lifting processes. Clear signs of a smoke impact on the record-breaking ozone hole over Antarctica in September–November 2020 were found. A slow decay of the stratospheric perturbation detected by means of the 532 nm aerosol optical thickness (AOT) yielded an e-folding decay time of 19–20 months. The maximum smoke AOT was around 1.0 over Punta Arenas in January 2020 and thus two to three orders of magnitude above the stratospheric aerosol background of 0.005. After two months with strongly varying smoke conditions, the 532 nm AOT decreased to 0.03–0.06 from March–December 2020 and to 0.015–0.03 throughout 2021. The particle extinction coefficients were in the range of 10–75 Mm −1 in January 2020, and later on mostly between 1 and 5 Mm −1 . Combined lidar-photometer retrievals revealed typical smoke extinction-to-backscatter ratios of 69 ±19 sr (at 355 nm), 91 ± 17 sr (at 532 nm), and 120 ± 22 sr (at 1064 nm). An ozone reduction of 20–25 % in the 15–22 km height range was observed over Antarctic and New Zealand ozonesonde stations in the smoke-polluted air with particle surface area concentrations of 1–5 μ m 2 cm −3 . Text Antarc* Antarctic Antarctica Copernicus Publications: E-Journals Antarctic Argentina New Zealand
institution Open Polar
collection Copernicus Publications: E-Journals
op_collection_id ftcopernicus
language English
description Record-breaking wildfires raged in southeastern Australia in late December 2019 and early January 2020. Rather strong pyrocumulonimbus (pyroCb) convection developed over the fire areas and lifted enormous amounts of biomass-burning smoke into the tropopause region and caused the strongest wildfire-related stratospheric aerosol perturbation ever observed around the globe. We discuss the geometrical, optical, and microphyscial properties of the stratospheric smoke layers and the decay of this major stratospheric perturbation. A multiwavelength polarization Raman lidar at Punta Arenas (53.2° S, 70.9° W), southern Chile, and an elastic-backscatter Raman lidar at Río Grande (53.8° S, 67.7° W) in southern Argentina were operated to monitor the major record-breaking event until the end of 2021. These lidar measurements can be regarded as representative for mid to high latitudes in the Southern Hemisphere. A unique dynamical feature, an anticyclonic, smoke-filled vortex with 1000 km horizontal width and 5 km vertical extent, which ascended by about 500 m per day, was observed over the full last week of January 2020. The key results of the long-term study are as follows: The smoke layers extended, on average, from 9 to 24 km in height. The smoke partly ascended to more than 30 km height as a result of self-lifting processes. Clear signs of a smoke impact on the record-breaking ozone hole over Antarctica in September–November 2020 were found. A slow decay of the stratospheric perturbation detected by means of the 532 nm aerosol optical thickness (AOT) yielded an e-folding decay time of 19–20 months. The maximum smoke AOT was around 1.0 over Punta Arenas in January 2020 and thus two to three orders of magnitude above the stratospheric aerosol background of 0.005. After two months with strongly varying smoke conditions, the 532 nm AOT decreased to 0.03–0.06 from March–December 2020 and to 0.015–0.03 throughout 2021. The particle extinction coefficients were in the range of 10–75 Mm −1 in January 2020, and later on mostly between 1 and 5 Mm −1 . Combined lidar-photometer retrievals revealed typical smoke extinction-to-backscatter ratios of 69 ±19 sr (at 355 nm), 91 ± 17 sr (at 532 nm), and 120 ± 22 sr (at 1064 nm). An ozone reduction of 20–25 % in the 15–22 km height range was observed over Antarctic and New Zealand ozonesonde stations in the smoke-polluted air with particle surface area concentrations of 1–5 μ m 2 cm −3 .
format Text
author Ohneiser, Kevin
Ansmann, Albert
Kaifler, Bernd
Chudnovsky, Alexandra
Barja, Boris
Knopf, Daniel A.
Kaifler, Natalie
Baars, Holger
Seifert, Patric
Villanueva, Diego
Jimenez, Cristofer
Radenz, Martin
Engelmann, Ronny
Veselovskii, Igor
Zamorano, Felix
spellingShingle Ohneiser, Kevin
Ansmann, Albert
Kaifler, Bernd
Chudnovsky, Alexandra
Barja, Boris
Knopf, Daniel A.
Kaifler, Natalie
Baars, Holger
Seifert, Patric
Villanueva, Diego
Jimenez, Cristofer
Radenz, Martin
Engelmann, Ronny
Veselovskii, Igor
Zamorano, Felix
Australian wildfire smoke in the stratosphere: the decay phase in 2020/21 and impact on ozone depletion
author_facet Ohneiser, Kevin
Ansmann, Albert
Kaifler, Bernd
Chudnovsky, Alexandra
Barja, Boris
Knopf, Daniel A.
Kaifler, Natalie
Baars, Holger
Seifert, Patric
Villanueva, Diego
Jimenez, Cristofer
Radenz, Martin
Engelmann, Ronny
Veselovskii, Igor
Zamorano, Felix
author_sort Ohneiser, Kevin
title Australian wildfire smoke in the stratosphere: the decay phase in 2020/21 and impact on ozone depletion
title_short Australian wildfire smoke in the stratosphere: the decay phase in 2020/21 and impact on ozone depletion
title_full Australian wildfire smoke in the stratosphere: the decay phase in 2020/21 and impact on ozone depletion
title_fullStr Australian wildfire smoke in the stratosphere: the decay phase in 2020/21 and impact on ozone depletion
title_full_unstemmed Australian wildfire smoke in the stratosphere: the decay phase in 2020/21 and impact on ozone depletion
title_sort australian wildfire smoke in the stratosphere: the decay phase in 2020/21 and impact on ozone depletion
publishDate 2022
url https://doi.org/10.5194/acp-2021-1097
https://acp.copernicus.org/preprints/acp-2021-1097/
geographic Antarctic
Argentina
New Zealand
geographic_facet Antarctic
Argentina
New Zealand
genre Antarc*
Antarctic
Antarctica
genre_facet Antarc*
Antarctic
Antarctica
op_source eISSN: 1680-7324
op_relation doi:10.5194/acp-2021-1097
https://acp.copernicus.org/preprints/acp-2021-1097/
op_doi https://doi.org/10.5194/acp-2021-1097
_version_ 1766272482187149312