An approach to sulfate geoengineering with surface emissions of carbonyl sulfide

Sulfate geoengineering (SG) methods based on lower stratospheric tropical injection of sulfur dioxide ( SO 2 ) have been widely discussed in recent years, focusing on the direct and indirect effects they would have on the climate system. Here a potential alternative method is discussed, where sulfur...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: Quaglia, Ilaria, Visioni, Daniele, Pitari, Giovanni, Kravitz, Ben
Format: Text
Language:English
Published: 2022
Subjects:
Online Access:https://doi.org/10.5194/acp-22-5757-2022
https://acp.copernicus.org/articles/22/5757/2022/
id ftcopernicus:oai:publications.copernicus.org:acp98090
record_format openpolar
institution Open Polar
collection Copernicus Publications: E-Journals
op_collection_id ftcopernicus
language English
description Sulfate geoengineering (SG) methods based on lower stratospheric tropical injection of sulfur dioxide ( SO 2 ) have been widely discussed in recent years, focusing on the direct and indirect effects they would have on the climate system. Here a potential alternative method is discussed, where sulfur emissions are located at the surface or in the troposphere in the form of carbonyl sulfide (COS) gas. There are two time-dependent chemistry–climate model experiments designed from the years 2021 to 2055, assuming a 40 <math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">Tg</mi><mo>-</mo><mi mathvariant="normal">S</mi><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">yr</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="54pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="f2da400167d0543c1d92eef2d84cad3e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5757-2022-ie00001.svg" width="54pt" height="15pt" src="acp-22-5757-2022-ie00001.png"/></svg:svg> artificial global flux of COS, which is geographically distributed following the present-day anthropogenic COS surface emissions (SG-COS-SRF) or a 6 <math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">Tg</mi><mo>-</mo><mi mathvariant="normal">S</mi><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">yr</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="54pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="163990e6943dee2fe272864c3ddbc533"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5757-2022-ie00002.svg" width="54pt" height="15pt" src="acp-22-5757-2022-ie00002.png"/></svg:svg> injection of COS in the tropical upper troposphere (SG-COS-TTL). The budget of COS and sulfur species is discussed, as are the effects of both SG-COS strategies on the stratospheric sulfate aerosol optical depth ( <math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>∼</mo><mi mathvariant="normal">Δ</mi><mi mathvariant="italic">τ</mi><mo>=</mo><mn mathvariant="normal">0.080</mn></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="66pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="1ed86419d1791fb3911b06402498c099"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5757-2022-ie00003.svg" width="66pt" height="10pt" src="acp-22-5757-2022-ie00003.png"/></svg:svg> in the years 2046–2055), aerosol effective radius (0.46 µm ), surface SO x deposition ( + 8.9 % for SG-COS-SRF; + 3.3 % for SG-COS-TTL), and tropopause radiative forcing (RF; <math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>∼</mo><mo>-</mo><mn mathvariant="normal">1.5</mn></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="35pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="6c6a95f4e09a47dd93baf926c93fe4eb"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5757-2022-ie00004.svg" width="35pt" height="10pt" src="acp-22-5757-2022-ie00004.png"/></svg:svg> W m −2 in all-sky conditions in both SG-COS experiments). Indirect effects on ozone, methane and stratospheric water vapour are also considered, along with the COS direct contribution. According to our model results, the resulting net RF is − 1.3 W m −2 , for SG-COS-SRF, and − 1.5 W m −2 , for SG-COS-TTL, and it is comparable to the corresponding RF of − 1.7 W m −2 obtained with a sustained injection of 4 <math xmlns="http://www.w3.org/1998/Math/MathML" id="M17" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">Tg</mi><mo>-</mo><mi mathvariant="normal">S</mi><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">yr</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="54pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="3467dc9edfdf867b36605c0768e5e497"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5757-2022-ie00005.svg" width="54pt" height="15pt" src="acp-22-5757-2022-ie00005.png"/></svg:svg> in the tropical lower stratosphere in the form of SO 2 (SG-SO2, which is able to produce a comparable increase of the sulfate aerosol optical depth). Significant changes in the stratospheric ozone response are found in both SG-COS experiments with respect to SG-SO2 ( ∼5 DU versus + 1.4 DU globally). According to the model results, the resulting ultraviolet B (UVB) perturbation at the surface accounts for − 4.3 % as a global and annual average (versus − 2.4 % in the SG-SO2 case), with a springtime Antarctic decrease of − 2.7 % (versus a + 5.8 % increase in the SG-SO2 experiment). Overall, we find that an increase in COS emissions may be feasible and produce a more latitudinally uniform forcing without the need for the deployment of stratospheric aircraft. However, our assumption that the rate of COS uptake by soils and plants does not vary with increasing COS concentrations will need to be investigated in future work, and more studies are needed on the prolonged exposure effects to higher COS values in humans and ecosystems.
format Text
author Quaglia, Ilaria
Visioni, Daniele
Pitari, Giovanni
Kravitz, Ben
spellingShingle Quaglia, Ilaria
Visioni, Daniele
Pitari, Giovanni
Kravitz, Ben
An approach to sulfate geoengineering with surface emissions of carbonyl sulfide
author_facet Quaglia, Ilaria
Visioni, Daniele
Pitari, Giovanni
Kravitz, Ben
author_sort Quaglia, Ilaria
title An approach to sulfate geoengineering with surface emissions of carbonyl sulfide
title_short An approach to sulfate geoengineering with surface emissions of carbonyl sulfide
title_full An approach to sulfate geoengineering with surface emissions of carbonyl sulfide
title_fullStr An approach to sulfate geoengineering with surface emissions of carbonyl sulfide
title_full_unstemmed An approach to sulfate geoengineering with surface emissions of carbonyl sulfide
title_sort approach to sulfate geoengineering with surface emissions of carbonyl sulfide
publishDate 2022
url https://doi.org/10.5194/acp-22-5757-2022
https://acp.copernicus.org/articles/22/5757/2022/
geographic Antarctic
geographic_facet Antarctic
genre Antarc*
Antarctic
genre_facet Antarc*
Antarctic
op_source eISSN: 1680-7324
op_relation doi:10.5194/acp-22-5757-2022
https://acp.copernicus.org/articles/22/5757/2022/
op_doi https://doi.org/10.5194/acp-22-5757-2022
container_title Atmospheric Chemistry and Physics
container_volume 22
container_issue 9
container_start_page 5757
op_container_end_page 5773
_version_ 1766272497925226496
spelling ftcopernicus:oai:publications.copernicus.org:acp98090 2023-05-15T14:02:18+02:00 An approach to sulfate geoengineering with surface emissions of carbonyl sulfide Quaglia, Ilaria Visioni, Daniele Pitari, Giovanni Kravitz, Ben 2022-05-03 application/pdf https://doi.org/10.5194/acp-22-5757-2022 https://acp.copernicus.org/articles/22/5757/2022/ eng eng doi:10.5194/acp-22-5757-2022 https://acp.copernicus.org/articles/22/5757/2022/ eISSN: 1680-7324 Text 2022 ftcopernicus https://doi.org/10.5194/acp-22-5757-2022 2022-05-09T16:22:28Z Sulfate geoengineering (SG) methods based on lower stratospheric tropical injection of sulfur dioxide ( SO 2 ) have been widely discussed in recent years, focusing on the direct and indirect effects they would have on the climate system. Here a potential alternative method is discussed, where sulfur emissions are located at the surface or in the troposphere in the form of carbonyl sulfide (COS) gas. There are two time-dependent chemistry–climate model experiments designed from the years 2021 to 2055, assuming a 40 <math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">Tg</mi><mo>-</mo><mi mathvariant="normal">S</mi><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">yr</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="54pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="f2da400167d0543c1d92eef2d84cad3e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5757-2022-ie00001.svg" width="54pt" height="15pt" src="acp-22-5757-2022-ie00001.png"/></svg:svg> artificial global flux of COS, which is geographically distributed following the present-day anthropogenic COS surface emissions (SG-COS-SRF) or a 6 <math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">Tg</mi><mo>-</mo><mi mathvariant="normal">S</mi><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">yr</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="54pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="163990e6943dee2fe272864c3ddbc533"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5757-2022-ie00002.svg" width="54pt" height="15pt" src="acp-22-5757-2022-ie00002.png"/></svg:svg> injection of COS in the tropical upper troposphere (SG-COS-TTL). The budget of COS and sulfur species is discussed, as are the effects of both SG-COS strategies on the stratospheric sulfate aerosol optical depth ( <math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>∼</mo><mi mathvariant="normal">Δ</mi><mi mathvariant="italic">τ</mi><mo>=</mo><mn mathvariant="normal">0.080</mn></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="66pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="1ed86419d1791fb3911b06402498c099"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5757-2022-ie00003.svg" width="66pt" height="10pt" src="acp-22-5757-2022-ie00003.png"/></svg:svg> in the years 2046–2055), aerosol effective radius (0.46 µm ), surface SO x deposition ( + 8.9 % for SG-COS-SRF; + 3.3 % for SG-COS-TTL), and tropopause radiative forcing (RF; <math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>∼</mo><mo>-</mo><mn mathvariant="normal">1.5</mn></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="35pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="6c6a95f4e09a47dd93baf926c93fe4eb"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5757-2022-ie00004.svg" width="35pt" height="10pt" src="acp-22-5757-2022-ie00004.png"/></svg:svg> W m −2 in all-sky conditions in both SG-COS experiments). Indirect effects on ozone, methane and stratospheric water vapour are also considered, along with the COS direct contribution. According to our model results, the resulting net RF is − 1.3 W m −2 , for SG-COS-SRF, and − 1.5 W m −2 , for SG-COS-TTL, and it is comparable to the corresponding RF of − 1.7 W m −2 obtained with a sustained injection of 4 <math xmlns="http://www.w3.org/1998/Math/MathML" id="M17" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">Tg</mi><mo>-</mo><mi mathvariant="normal">S</mi><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">yr</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="54pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="3467dc9edfdf867b36605c0768e5e497"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5757-2022-ie00005.svg" width="54pt" height="15pt" src="acp-22-5757-2022-ie00005.png"/></svg:svg> in the tropical lower stratosphere in the form of SO 2 (SG-SO2, which is able to produce a comparable increase of the sulfate aerosol optical depth). Significant changes in the stratospheric ozone response are found in both SG-COS experiments with respect to SG-SO2 ( ∼5 DU versus + 1.4 DU globally). According to the model results, the resulting ultraviolet B (UVB) perturbation at the surface accounts for − 4.3 % as a global and annual average (versus − 2.4 % in the SG-SO2 case), with a springtime Antarctic decrease of − 2.7 % (versus a + 5.8 % increase in the SG-SO2 experiment). Overall, we find that an increase in COS emissions may be feasible and produce a more latitudinally uniform forcing without the need for the deployment of stratospheric aircraft. However, our assumption that the rate of COS uptake by soils and plants does not vary with increasing COS concentrations will need to be investigated in future work, and more studies are needed on the prolonged exposure effects to higher COS values in humans and ecosystems. Text Antarc* Antarctic Copernicus Publications: E-Journals Antarctic Atmospheric Chemistry and Physics 22 9 5757 5773