The importance of alkyl nitrates and sea ice emissions to atmospheric NOx sources and cycling in the summertime Southern Ocean marine boundary layer

Atmospheric nitrate originates from the oxidation of nitrogen oxides <math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>(</mo><mrow class="chem"&...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: Burger, Jessica M., Granger, Julie, Joyce, Emily, Hastings, Meredith G., Spence, Kurt A. M., Altieri, Katye E.
Format: Text
Language:English
Published: 2022
Subjects:
Online Access:https://doi.org/10.5194/acp-22-1081-2022
https://acp.copernicus.org/articles/22/1081/2022/
id ftcopernicus:oai:publications.copernicus.org:acp95476
record_format openpolar
institution Open Polar
collection Copernicus Publications: E-Journals
op_collection_id ftcopernicus
language English
description Atmospheric nitrate originates from the oxidation of nitrogen oxides <math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>(</mo><mrow class="chem"><msub><mi mathvariant="normal">NO</mi><mi>x</mi></msub></mrow><mo>=</mo><mrow class="chem"><mi mathvariant="normal">NO</mi></mrow><mo>+</mo><mrow class="chem"><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">2</mn></msub></mrow><mo>)</mo></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="93pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="5750f2f575feb9c155d643b1c38773c6"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-1081-2022-ie00001.svg" width="93pt" height="13pt" src="acp-22-1081-2022-ie00001.png"/></svg:svg> and impacts both tropospheric chemistry and climate. NO x sources, cycling and NO x to nitrate formation pathways are poorly constrained in remote marine regions, especially the Southern Ocean, where pristine conditions serve as a useful proxy for the pre-industrial atmosphere. Here, we measured the isotopic composition ( δ 15 N and δ 18 O ) of atmospheric nitrate in coarse-mode ( >1 µm ) aerosols collected in the summertime marine boundary layer of the Atlantic Southern Ocean from 34.5 to 70 ∘ S and across the northern edge of the Weddell Sea. The δ 15 N – <math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="737339a8d3517116341490f01d8cfecf"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-1081-2022-ie00002.svg" width="25pt" height="16pt" src="acp-22-1081-2022-ie00002.png"/></svg:svg> decreased with latitude from −2.7 ‰ to −42.9 ‰. The decline in δ 15 N with latitude is attributed to changes in the dominant NO x sources: lightning at the low latitudes, oceanic alkyl nitrates at the mid-latitudes and photolysis of nitrate in snow at the high latitudes. There is no evidence of any influence from anthropogenic NO x sources or equilibrium isotope fractionation. Using air mass back trajectories and an isotope mixing model, we calculate that oceanic alkyl nitrate emissions have a δ 15 N signature of <math xmlns="http://www.w3.org/1998/Math/MathML" id="M19" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">21.8</mn><mo>±</mo><mn mathvariant="normal">7.6</mn></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="58pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="c1949f6e2c58afc807f9f69473c4c66c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-1081-2022-ie00003.svg" width="58pt" height="10pt" src="acp-22-1081-2022-ie00003.png"/></svg:svg> ‰. Given that measurements of alkyl nitrate contributions to remote nitrogen budgets are scarce, this may be a useful tracer for detecting their contribution in other oceanic regions. The δ 18 O – <math xmlns="http://www.w3.org/1998/Math/MathML" id="M21" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="8a28d0a06c83cc478fcb3953dfc5e6ea"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-1081-2022-ie00004.svg" width="25pt" height="16pt" src="acp-22-1081-2022-ie00004.png"/></svg:svg> was always less than 70 ‰, indicating that daytime processes involving OH are the dominant NO x oxidation pathway during summer. Unusually low δ 18 O – <math xmlns="http://www.w3.org/1998/Math/MathML" id="M24" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="a226654730cbc5374d88051445c2d9d9"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-1081-2022-ie00005.svg" width="25pt" height="16pt" src="acp-22-1081-2022-ie00005.png"/></svg:svg> values (less than 31 ‰) were observed at the western edge of the Weddell Sea. The air mass history of these samples indicates extensive interaction with sea-ice-covered ocean, which is known to enhance peroxy radical production. The observed low δ 18 O – <math xmlns="http://www.w3.org/1998/Math/MathML" id="M26" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="59e8efc9900af362c4e31d9012378c85"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-1081-2022-ie00006.svg" width="25pt" height="16pt" src="acp-22-1081-2022-ie00006.png"/></svg:svg> is therefore attributed to increased exchange of NO with peroxy radicals, which have a low δ 18 O , relative to ozone, which has a high δ 18 O . This study reveals that the mid- and high-latitude surface ocean may serve as a more important NO x source than previously thought and that the ice-covered surface ocean impacts the reactive nitrogen budget as well as the oxidative capacity of the marine boundary layer.
format Text
author Burger, Jessica M.
Granger, Julie
Joyce, Emily
Hastings, Meredith G.
Spence, Kurt A. M.
Altieri, Katye E.
spellingShingle Burger, Jessica M.
Granger, Julie
Joyce, Emily
Hastings, Meredith G.
Spence, Kurt A. M.
Altieri, Katye E.
The importance of alkyl nitrates and sea ice emissions to atmospheric NOx sources and cycling in the summertime Southern Ocean marine boundary layer
author_facet Burger, Jessica M.
Granger, Julie
Joyce, Emily
Hastings, Meredith G.
Spence, Kurt A. M.
Altieri, Katye E.
author_sort Burger, Jessica M.
title The importance of alkyl nitrates and sea ice emissions to atmospheric NOx sources and cycling in the summertime Southern Ocean marine boundary layer
title_short The importance of alkyl nitrates and sea ice emissions to atmospheric NOx sources and cycling in the summertime Southern Ocean marine boundary layer
title_full The importance of alkyl nitrates and sea ice emissions to atmospheric NOx sources and cycling in the summertime Southern Ocean marine boundary layer
title_fullStr The importance of alkyl nitrates and sea ice emissions to atmospheric NOx sources and cycling in the summertime Southern Ocean marine boundary layer
title_full_unstemmed The importance of alkyl nitrates and sea ice emissions to atmospheric NOx sources and cycling in the summertime Southern Ocean marine boundary layer
title_sort importance of alkyl nitrates and sea ice emissions to atmospheric nox sources and cycling in the summertime southern ocean marine boundary layer
publishDate 2022
url https://doi.org/10.5194/acp-22-1081-2022
https://acp.copernicus.org/articles/22/1081/2022/
geographic Southern Ocean
Weddell
Weddell Sea
geographic_facet Southern Ocean
Weddell
Weddell Sea
genre Sea ice
Southern Ocean
Weddell Sea
genre_facet Sea ice
Southern Ocean
Weddell Sea
op_source eISSN: 1680-7324
op_relation doi:10.5194/acp-22-1081-2022
https://acp.copernicus.org/articles/22/1081/2022/
op_doi https://doi.org/10.5194/acp-22-1081-2022
container_title Atmospheric Chemistry and Physics
container_volume 22
container_issue 2
container_start_page 1081
op_container_end_page 1096
_version_ 1766195833676496896
spelling ftcopernicus:oai:publications.copernicus.org:acp95476 2023-05-15T18:19:01+02:00 The importance of alkyl nitrates and sea ice emissions to atmospheric NOx sources and cycling in the summertime Southern Ocean marine boundary layer Burger, Jessica M. Granger, Julie Joyce, Emily Hastings, Meredith G. Spence, Kurt A. M. Altieri, Katye E. 2022-01-21 application/pdf https://doi.org/10.5194/acp-22-1081-2022 https://acp.copernicus.org/articles/22/1081/2022/ eng eng doi:10.5194/acp-22-1081-2022 https://acp.copernicus.org/articles/22/1081/2022/ eISSN: 1680-7324 Text 2022 ftcopernicus https://doi.org/10.5194/acp-22-1081-2022 2022-01-24T17:22:16Z Atmospheric nitrate originates from the oxidation of nitrogen oxides <math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>(</mo><mrow class="chem"><msub><mi mathvariant="normal">NO</mi><mi>x</mi></msub></mrow><mo>=</mo><mrow class="chem"><mi mathvariant="normal">NO</mi></mrow><mo>+</mo><mrow class="chem"><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">2</mn></msub></mrow><mo>)</mo></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="93pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="5750f2f575feb9c155d643b1c38773c6"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-1081-2022-ie00001.svg" width="93pt" height="13pt" src="acp-22-1081-2022-ie00001.png"/></svg:svg> and impacts both tropospheric chemistry and climate. NO x sources, cycling and NO x to nitrate formation pathways are poorly constrained in remote marine regions, especially the Southern Ocean, where pristine conditions serve as a useful proxy for the pre-industrial atmosphere. Here, we measured the isotopic composition ( δ 15 N and δ 18 O ) of atmospheric nitrate in coarse-mode ( >1 µm ) aerosols collected in the summertime marine boundary layer of the Atlantic Southern Ocean from 34.5 to 70 ∘ S and across the northern edge of the Weddell Sea. The δ 15 N – <math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="737339a8d3517116341490f01d8cfecf"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-1081-2022-ie00002.svg" width="25pt" height="16pt" src="acp-22-1081-2022-ie00002.png"/></svg:svg> decreased with latitude from −2.7 ‰ to −42.9 ‰. The decline in δ 15 N with latitude is attributed to changes in the dominant NO x sources: lightning at the low latitudes, oceanic alkyl nitrates at the mid-latitudes and photolysis of nitrate in snow at the high latitudes. There is no evidence of any influence from anthropogenic NO x sources or equilibrium isotope fractionation. Using air mass back trajectories and an isotope mixing model, we calculate that oceanic alkyl nitrate emissions have a δ 15 N signature of <math xmlns="http://www.w3.org/1998/Math/MathML" id="M19" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">21.8</mn><mo>±</mo><mn mathvariant="normal">7.6</mn></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="58pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="c1949f6e2c58afc807f9f69473c4c66c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-1081-2022-ie00003.svg" width="58pt" height="10pt" src="acp-22-1081-2022-ie00003.png"/></svg:svg> ‰. Given that measurements of alkyl nitrate contributions to remote nitrogen budgets are scarce, this may be a useful tracer for detecting their contribution in other oceanic regions. The δ 18 O – <math xmlns="http://www.w3.org/1998/Math/MathML" id="M21" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="8a28d0a06c83cc478fcb3953dfc5e6ea"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-1081-2022-ie00004.svg" width="25pt" height="16pt" src="acp-22-1081-2022-ie00004.png"/></svg:svg> was always less than 70 ‰, indicating that daytime processes involving OH are the dominant NO x oxidation pathway during summer. Unusually low δ 18 O – <math xmlns="http://www.w3.org/1998/Math/MathML" id="M24" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="a226654730cbc5374d88051445c2d9d9"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-1081-2022-ie00005.svg" width="25pt" height="16pt" src="acp-22-1081-2022-ie00005.png"/></svg:svg> values (less than 31 ‰) were observed at the western edge of the Weddell Sea. The air mass history of these samples indicates extensive interaction with sea-ice-covered ocean, which is known to enhance peroxy radical production. The observed low δ 18 O – <math xmlns="http://www.w3.org/1998/Math/MathML" id="M26" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="59e8efc9900af362c4e31d9012378c85"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-1081-2022-ie00006.svg" width="25pt" height="16pt" src="acp-22-1081-2022-ie00006.png"/></svg:svg> is therefore attributed to increased exchange of NO with peroxy radicals, which have a low δ 18 O , relative to ozone, which has a high δ 18 O . This study reveals that the mid- and high-latitude surface ocean may serve as a more important NO x source than previously thought and that the ice-covered surface ocean impacts the reactive nitrogen budget as well as the oxidative capacity of the marine boundary layer. Text Sea ice Southern Ocean Weddell Sea Copernicus Publications: E-Journals Southern Ocean Weddell Weddell Sea Atmospheric Chemistry and Physics 22 2 1081 1096