Measurement report: Spatial variations in ionic chemistry and water-stable isotopes in the snowpack on glaciers across Svalbard during the 2015–2016 snow accumulation season

The Svalbard archipelago, located at the Arctic sea-ice edge between 74 and 81 ∘ N, is ∼60 % covered by glaciers. The region experiences rapid variations in atmospheric flow during the snow season (from late September to May) and can be affected by air advected from both lower and higher latitudes,...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: Barbaro, Elena, Koziol, Krystyna, Björkman, Mats P., Vega, Carmen P., Zdanowicz, Christian, Martma, Tonu, Gallet, Jean-Charles, Kępski, Daniel, Larose, Catherine, Luks, Bartłomiej, Tolle, Florian, Schuler, Thomas V., Uszczyk, Aleksander, Spolaor, Andrea
Format: Text
Language:English
Published: 2021
Subjects:
Online Access:https://doi.org/10.5194/acp-21-3163-2021
https://acp.copernicus.org/articles/21/3163/2021/
id ftcopernicus:oai:publications.copernicus.org:acp87156
record_format openpolar
institution Open Polar
collection Copernicus Publications: E-Journals
op_collection_id ftcopernicus
language English
description The Svalbard archipelago, located at the Arctic sea-ice edge between 74 and 81 ∘ N, is ∼60 % covered by glaciers. The region experiences rapid variations in atmospheric flow during the snow season (from late September to May) and can be affected by air advected from both lower and higher latitudes, which likely impact the chemical composition of snowfall. While long-term changes in Svalbard snow chemistry have been documented in ice cores drilled from two high-elevation glaciers, the spatial variability of the snowpack composition across Svalbard is comparatively poorly understood. Here, we report the results of the most comprehensive seasonal snow chemistry survey to date, carried out in April 2016 across 22 sites on seven glaciers across the archipelago. At each glacier, three snowpits were sampled along the altitudinal profiles and the collected samples were analysed for major ions ( Ca 2+ , K + , Na + , Mg 2+ , <math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="3226c502fdca30fe88bf9305df4b3716"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-3163-2021-ie00001.svg" width="24pt" height="15pt" src="acp-21-3163-2021-ie00001.png"/></svg:svg> , <math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">SO</mi><mn mathvariant="normal">4</mn><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="29pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="40da026c69d6bb7b362f8aefb7758b92"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-3163-2021-ie00002.svg" width="29pt" height="17pt" src="acp-21-3163-2021-ie00002.png"/></svg:svg> , Br − , Cl − , and <math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="eb51cd45ba2a21283d090226a04e61ba"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-3163-2021-ie00003.svg" width="25pt" height="16pt" src="acp-21-3163-2021-ie00003.png"/></svg:svg> ) and stable water isotopes ( δ 18 O , δ 2 H ). The main aims were to investigate the natural and anthropogenic processes influencing the snowpack and to better understand the influence of atmospheric aerosol transport and deposition patterns on the snow chemical composition. The snow deposited in the southern region of Svalbard is characterized by the highest total ionic loads, mainly attributed to sea-salt particles. Both <math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="c5e3e0772eea57309f236de17ca43cb8"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-3163-2021-ie00004.svg" width="25pt" height="16pt" src="acp-21-3163-2021-ie00004.png"/></svg:svg> and <math xmlns="http://www.w3.org/1998/Math/MathML" id="M15" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="8954cfb2fcef1f8dc372e5d7425e25d0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-3163-2021-ie00005.svg" width="24pt" height="15pt" src="acp-21-3163-2021-ie00005.png"/></svg:svg> in the seasonal snowpack reflect secondary aerosol formation and post-depositional changes, resulting in very different spatial deposition patterns: <math xmlns="http://www.w3.org/1998/Math/MathML" id="M16" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="48a6d5724cc017ced9c974ab9a81c03a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-3163-2021-ie00006.svg" width="25pt" height="16pt" src="acp-21-3163-2021-ie00006.png"/></svg:svg> has its highest loading in north-western Spitsbergen and <math xmlns="http://www.w3.org/1998/Math/MathML" id="M17" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="8b20487e53d7ab6a3bf592e9df90e3eb"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-3163-2021-ie00007.svg" width="24pt" height="15pt" src="acp-21-3163-2021-ie00007.png"/></svg:svg> in the south-west. The Br − enrichment in snow is highest in north-eastern glacier sites closest to areas of extensive sea-ice coverage. Spatial correlation patterns between Na + and δ 18 O suggest that the influence of long-range transport of aerosols on snow chemistry is proportionally greater above 600–700 m a.s.l.
format Text
author Barbaro, Elena
Koziol, Krystyna
Björkman, Mats P.
Vega, Carmen P.
Zdanowicz, Christian
Martma, Tonu
Gallet, Jean-Charles
Kępski, Daniel
Larose, Catherine
Luks, Bartłomiej
Tolle, Florian
Schuler, Thomas V.
Uszczyk, Aleksander
Spolaor, Andrea
spellingShingle Barbaro, Elena
Koziol, Krystyna
Björkman, Mats P.
Vega, Carmen P.
Zdanowicz, Christian
Martma, Tonu
Gallet, Jean-Charles
Kępski, Daniel
Larose, Catherine
Luks, Bartłomiej
Tolle, Florian
Schuler, Thomas V.
Uszczyk, Aleksander
Spolaor, Andrea
Measurement report: Spatial variations in ionic chemistry and water-stable isotopes in the snowpack on glaciers across Svalbard during the 2015–2016 snow accumulation season
author_facet Barbaro, Elena
Koziol, Krystyna
Björkman, Mats P.
Vega, Carmen P.
Zdanowicz, Christian
Martma, Tonu
Gallet, Jean-Charles
Kępski, Daniel
Larose, Catherine
Luks, Bartłomiej
Tolle, Florian
Schuler, Thomas V.
Uszczyk, Aleksander
Spolaor, Andrea
author_sort Barbaro, Elena
title Measurement report: Spatial variations in ionic chemistry and water-stable isotopes in the snowpack on glaciers across Svalbard during the 2015–2016 snow accumulation season
title_short Measurement report: Spatial variations in ionic chemistry and water-stable isotopes in the snowpack on glaciers across Svalbard during the 2015–2016 snow accumulation season
title_full Measurement report: Spatial variations in ionic chemistry and water-stable isotopes in the snowpack on glaciers across Svalbard during the 2015–2016 snow accumulation season
title_fullStr Measurement report: Spatial variations in ionic chemistry and water-stable isotopes in the snowpack on glaciers across Svalbard during the 2015–2016 snow accumulation season
title_full_unstemmed Measurement report: Spatial variations in ionic chemistry and water-stable isotopes in the snowpack on glaciers across Svalbard during the 2015–2016 snow accumulation season
title_sort measurement report: spatial variations in ionic chemistry and water-stable isotopes in the snowpack on glaciers across svalbard during the 2015–2016 snow accumulation season
publishDate 2021
url https://doi.org/10.5194/acp-21-3163-2021
https://acp.copernicus.org/articles/21/3163/2021/
long_lat ENVELOPE(-82.082,-82.082,75.784,75.784)
geographic Arctic
Eastern Glacier
Svalbard
Svalbard Archipelago
geographic_facet Arctic
Eastern Glacier
Svalbard
Svalbard Archipelago
genre Arctic
glacier
Sea ice
Svalbard
Spitsbergen
genre_facet Arctic
glacier
Sea ice
Svalbard
Spitsbergen
op_source eISSN: 1680-7324
op_relation doi:10.5194/acp-21-3163-2021
https://acp.copernicus.org/articles/21/3163/2021/
op_doi https://doi.org/10.5194/acp-21-3163-2021
container_title Atmospheric Chemistry and Physics
container_volume 21
container_issue 4
container_start_page 3163
op_container_end_page 3180
_version_ 1766350764993675264
spelling ftcopernicus:oai:publications.copernicus.org:acp87156 2023-05-15T15:20:30+02:00 Measurement report: Spatial variations in ionic chemistry and water-stable isotopes in the snowpack on glaciers across Svalbard during the 2015–2016 snow accumulation season Barbaro, Elena Koziol, Krystyna Björkman, Mats P. Vega, Carmen P. Zdanowicz, Christian Martma, Tonu Gallet, Jean-Charles Kępski, Daniel Larose, Catherine Luks, Bartłomiej Tolle, Florian Schuler, Thomas V. Uszczyk, Aleksander Spolaor, Andrea 2021-03-02 application/pdf https://doi.org/10.5194/acp-21-3163-2021 https://acp.copernicus.org/articles/21/3163/2021/ eng eng doi:10.5194/acp-21-3163-2021 https://acp.copernicus.org/articles/21/3163/2021/ eISSN: 1680-7324 Text 2021 ftcopernicus https://doi.org/10.5194/acp-21-3163-2021 2021-03-08T17:22:13Z The Svalbard archipelago, located at the Arctic sea-ice edge between 74 and 81 ∘ N, is ∼60 % covered by glaciers. The region experiences rapid variations in atmospheric flow during the snow season (from late September to May) and can be affected by air advected from both lower and higher latitudes, which likely impact the chemical composition of snowfall. While long-term changes in Svalbard snow chemistry have been documented in ice cores drilled from two high-elevation glaciers, the spatial variability of the snowpack composition across Svalbard is comparatively poorly understood. Here, we report the results of the most comprehensive seasonal snow chemistry survey to date, carried out in April 2016 across 22 sites on seven glaciers across the archipelago. At each glacier, three snowpits were sampled along the altitudinal profiles and the collected samples were analysed for major ions ( Ca 2+ , K + , Na + , Mg 2+ , <math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="3226c502fdca30fe88bf9305df4b3716"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-3163-2021-ie00001.svg" width="24pt" height="15pt" src="acp-21-3163-2021-ie00001.png"/></svg:svg> , <math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">SO</mi><mn mathvariant="normal">4</mn><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="29pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="40da026c69d6bb7b362f8aefb7758b92"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-3163-2021-ie00002.svg" width="29pt" height="17pt" src="acp-21-3163-2021-ie00002.png"/></svg:svg> , Br − , Cl − , and <math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="eb51cd45ba2a21283d090226a04e61ba"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-3163-2021-ie00003.svg" width="25pt" height="16pt" src="acp-21-3163-2021-ie00003.png"/></svg:svg> ) and stable water isotopes ( δ 18 O , δ 2 H ). The main aims were to investigate the natural and anthropogenic processes influencing the snowpack and to better understand the influence of atmospheric aerosol transport and deposition patterns on the snow chemical composition. The snow deposited in the southern region of Svalbard is characterized by the highest total ionic loads, mainly attributed to sea-salt particles. Both <math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="c5e3e0772eea57309f236de17ca43cb8"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-3163-2021-ie00004.svg" width="25pt" height="16pt" src="acp-21-3163-2021-ie00004.png"/></svg:svg> and <math xmlns="http://www.w3.org/1998/Math/MathML" id="M15" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="8954cfb2fcef1f8dc372e5d7425e25d0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-3163-2021-ie00005.svg" width="24pt" height="15pt" src="acp-21-3163-2021-ie00005.png"/></svg:svg> in the seasonal snowpack reflect secondary aerosol formation and post-depositional changes, resulting in very different spatial deposition patterns: <math xmlns="http://www.w3.org/1998/Math/MathML" id="M16" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="48a6d5724cc017ced9c974ab9a81c03a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-3163-2021-ie00006.svg" width="25pt" height="16pt" src="acp-21-3163-2021-ie00006.png"/></svg:svg> has its highest loading in north-western Spitsbergen and <math xmlns="http://www.w3.org/1998/Math/MathML" id="M17" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="8b20487e53d7ab6a3bf592e9df90e3eb"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-3163-2021-ie00007.svg" width="24pt" height="15pt" src="acp-21-3163-2021-ie00007.png"/></svg:svg> in the south-west. The Br − enrichment in snow is highest in north-eastern glacier sites closest to areas of extensive sea-ice coverage. Spatial correlation patterns between Na + and δ 18 O suggest that the influence of long-range transport of aerosols on snow chemistry is proportionally greater above 600–700 m a.s.l. Text Arctic glacier Sea ice Svalbard Spitsbergen Copernicus Publications: E-Journals Arctic Eastern Glacier ENVELOPE(-82.082,-82.082,75.784,75.784) Svalbard Svalbard Archipelago Atmospheric Chemistry and Physics 21 4 3163 3180