From a polar to a marine environment: has the changing Arctic led to a shift in aerosol light scattering properties?

The study of long-term trends in aerosol optical properties is an important task to understand the underlying aerosol processes influencing the change of climate. The Arctic, as the place where climate change manifests most, is an especially sensitive region of the world. Within this work, we use a...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: Heslin-Rees, Dominic, Burgos, Maria, Hansson, Hans-Christen, Krejci, Radovan, Ström, Johan, Tunved, Peter, Zieger, Paul
Format: Text
Language:English
Published: 2020
Subjects:
Online Access:https://doi.org/10.5194/acp-20-13671-2020
https://acp.copernicus.org/articles/20/13671/2020/
id ftcopernicus:oai:publications.copernicus.org:acp85959
record_format openpolar
spelling ftcopernicus:oai:publications.copernicus.org:acp85959 2023-05-15T14:52:57+02:00 From a polar to a marine environment: has the changing Arctic led to a shift in aerosol light scattering properties? Heslin-Rees, Dominic Burgos, Maria Hansson, Hans-Christen Krejci, Radovan Ström, Johan Tunved, Peter Zieger, Paul 2020-11-13 application/pdf https://doi.org/10.5194/acp-20-13671-2020 https://acp.copernicus.org/articles/20/13671/2020/ eng eng doi:10.5194/acp-20-13671-2020 https://acp.copernicus.org/articles/20/13671/2020/ eISSN: 1680-7324 Text 2020 ftcopernicus https://doi.org/10.5194/acp-20-13671-2020 2020-11-16T17:22:14Z The study of long-term trends in aerosol optical properties is an important task to understand the underlying aerosol processes influencing the change of climate. The Arctic, as the place where climate change manifests most, is an especially sensitive region of the world. Within this work, we use a unique long-term data record of key aerosol optical properties from the Zeppelin Observatory, Svalbard, to ask the question of whether the environmental changes of the last 2 decades in the Arctic are reflected in the observations. We perform a trend analysis of the measured particle light scattering and backscattering coefficients and the derived scattering Ångström exponent and hemispheric backscattering fraction. In contrast to previous studies, the effect of in-cloud scavenging and of potential sampling losses at the site are taken explicitly into account in the trend analysis. The analysis is combined with a back trajectory analysis and satellite-derived sea ice data to support the interpretation of the observed trends. We find that the optical properties of aerosol particles have undergone clear and significant changes in the past 2 decades. The scattering Ångström exponent exhibits statistically significant decreasing of between − 4.9 % yr −1 and − 6.5 % yr −1 (using wavelengths of λ =450 and 550 nm), while the particle light scattering coefficient exhibits statistically significant increasing trends of between 2.6 % yr −1 and 2.9 % yr −1 (at a wavelength of λ =550 nm). The magnitudes of the trends vary depending on the season. These trends indicate a shift to an aerosol dominated more by coarse-mode particles, most likely the result of increases in the relative amount of sea spray aerosol. We show that changes in air mass circulation patterns, specifically an increase in air masses from the south-west, are responsible for the shift in aerosol optical properties, while the decrease of Arctic sea ice in the last 2 decades only had a marginal influence on the observed trends. Text Arctic Climate change Sea ice Svalbard Copernicus Publications: E-Journals Arctic Svalbard Atmospheric Chemistry and Physics 20 21 13671 13686
institution Open Polar
collection Copernicus Publications: E-Journals
op_collection_id ftcopernicus
language English
description The study of long-term trends in aerosol optical properties is an important task to understand the underlying aerosol processes influencing the change of climate. The Arctic, as the place where climate change manifests most, is an especially sensitive region of the world. Within this work, we use a unique long-term data record of key aerosol optical properties from the Zeppelin Observatory, Svalbard, to ask the question of whether the environmental changes of the last 2 decades in the Arctic are reflected in the observations. We perform a trend analysis of the measured particle light scattering and backscattering coefficients and the derived scattering Ångström exponent and hemispheric backscattering fraction. In contrast to previous studies, the effect of in-cloud scavenging and of potential sampling losses at the site are taken explicitly into account in the trend analysis. The analysis is combined with a back trajectory analysis and satellite-derived sea ice data to support the interpretation of the observed trends. We find that the optical properties of aerosol particles have undergone clear and significant changes in the past 2 decades. The scattering Ångström exponent exhibits statistically significant decreasing of between − 4.9 % yr −1 and − 6.5 % yr −1 (using wavelengths of λ =450 and 550 nm), while the particle light scattering coefficient exhibits statistically significant increasing trends of between 2.6 % yr −1 and 2.9 % yr −1 (at a wavelength of λ =550 nm). The magnitudes of the trends vary depending on the season. These trends indicate a shift to an aerosol dominated more by coarse-mode particles, most likely the result of increases in the relative amount of sea spray aerosol. We show that changes in air mass circulation patterns, specifically an increase in air masses from the south-west, are responsible for the shift in aerosol optical properties, while the decrease of Arctic sea ice in the last 2 decades only had a marginal influence on the observed trends.
format Text
author Heslin-Rees, Dominic
Burgos, Maria
Hansson, Hans-Christen
Krejci, Radovan
Ström, Johan
Tunved, Peter
Zieger, Paul
spellingShingle Heslin-Rees, Dominic
Burgos, Maria
Hansson, Hans-Christen
Krejci, Radovan
Ström, Johan
Tunved, Peter
Zieger, Paul
From a polar to a marine environment: has the changing Arctic led to a shift in aerosol light scattering properties?
author_facet Heslin-Rees, Dominic
Burgos, Maria
Hansson, Hans-Christen
Krejci, Radovan
Ström, Johan
Tunved, Peter
Zieger, Paul
author_sort Heslin-Rees, Dominic
title From a polar to a marine environment: has the changing Arctic led to a shift in aerosol light scattering properties?
title_short From a polar to a marine environment: has the changing Arctic led to a shift in aerosol light scattering properties?
title_full From a polar to a marine environment: has the changing Arctic led to a shift in aerosol light scattering properties?
title_fullStr From a polar to a marine environment: has the changing Arctic led to a shift in aerosol light scattering properties?
title_full_unstemmed From a polar to a marine environment: has the changing Arctic led to a shift in aerosol light scattering properties?
title_sort from a polar to a marine environment: has the changing arctic led to a shift in aerosol light scattering properties?
publishDate 2020
url https://doi.org/10.5194/acp-20-13671-2020
https://acp.copernicus.org/articles/20/13671/2020/
geographic Arctic
Svalbard
geographic_facet Arctic
Svalbard
genre Arctic
Climate change
Sea ice
Svalbard
genre_facet Arctic
Climate change
Sea ice
Svalbard
op_source eISSN: 1680-7324
op_relation doi:10.5194/acp-20-13671-2020
https://acp.copernicus.org/articles/20/13671/2020/
op_doi https://doi.org/10.5194/acp-20-13671-2020
container_title Atmospheric Chemistry and Physics
container_volume 20
container_issue 21
container_start_page 13671
op_container_end_page 13686
_version_ 1766324352177930240