Elemental and water-insoluble organic carbon in Svalbard snow: a synthesis of observations during 2007–2018

Light-absorbing carbonaceous aerosols emitted by biomass or fossil fuel combustion can contribute to amplifying Arctic climate warming by lowering the albedo of snow. The Svalbard archipelago, being near to Europe and Russia, is particularly affected by these pollutants, and improved knowledge of th...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: Zdanowicz, Christian, Gallet, Jean-Charles, Björkman, Mats P., Larose, Catherine, Schuler, Thomas, Luks, Bartłomiej, Koziol, Krystyna, Spolaor, Andrea, Barbaro, Elena, Martma, Tõnu, Pelt, Ward, Wideqvist, Ulla, Ström, Johan
Format: Text
Language:English
Published: 2021
Subjects:
Online Access:https://doi.org/10.5194/acp-21-3035-2021
https://acp.copernicus.org/articles/21/3035/2021/
id ftcopernicus:oai:publications.copernicus.org:acp85766
record_format openpolar
institution Open Polar
collection Copernicus Publications: E-Journals
op_collection_id ftcopernicus
language English
description Light-absorbing carbonaceous aerosols emitted by biomass or fossil fuel combustion can contribute to amplifying Arctic climate warming by lowering the albedo of snow. The Svalbard archipelago, being near to Europe and Russia, is particularly affected by these pollutants, and improved knowledge of their distribution in snow is needed to assess their impact. Here we present and synthesize new data obtained on Svalbard between 2007 and 2018, comprising measurements of elemental (EC) and water-insoluble organic carbon (WIOC) in snow from 37 separate sites. We used these data, combined with meteorological data and snowpack modeling, to investigate the variability of EC and WIOC deposition in Svalbard snow across latitude, longitude, elevation and time. Overall, EC concentrations ( <math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>C</mi><mi mathvariant="normal">snow</mi><mi mathvariant="normal">EC</mi></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="28pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="6a389eec55a273c593d28a49f6bb0e5c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-3035-2021-ie00001.svg" width="28pt" height="16pt" src="acp-21-3035-2021-ie00001.png"/></svg:svg> ) ranged from <1.0 to 266.6 ng g −1 , while WIOC concentrations ( <math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>C</mi><mi mathvariant="normal">snow</mi><mi mathvariant="normal">WIOC</mi></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="32pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="a7a7591973d6bc98536c066f560a7f1a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-3035-2021-ie00002.svg" width="32pt" height="16pt" src="acp-21-3035-2021-ie00002.png"/></svg:svg> ) ranged from <1 to 9426 ng g −1 , with the highest values observed near Ny-Ålesund. Calculated snowpack loadings ( <math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>L</mi><mi mathvariant="normal">snow</mi><mi mathvariant="normal">EC</mi></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="28pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="0526c74bea7fa17d099d312958f99776"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-3035-2021-ie00003.svg" width="28pt" height="16pt" src="acp-21-3035-2021-ie00003.png"/></svg:svg> , <math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>L</mi><mi mathvariant="normal">snow</mi><mi mathvariant="normal">WIOC</mi></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="31pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="ec30e4dcc00ac8ab2ded5658b95a2bb0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-3035-2021-ie00004.svg" width="31pt" height="16pt" src="acp-21-3035-2021-ie00004.png"/></svg:svg> ) on glaciers surveyed in spring 2016 were 0.1 to 2.6 mg m −2 and 2 to 173 mg m −2 , respectively. The median <math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>C</mi><mi mathvariant="normal">snow</mi><mi mathvariant="normal">EC</mi></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="28pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="ecbefc87bd48f7a34186257ed63cd7c0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-3035-2021-ie00005.svg" width="28pt" height="16pt" src="acp-21-3035-2021-ie00005.png"/></svg:svg> and the <math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>L</mi><mi mathvariant="normal">snow</mi><mi mathvariant="normal">EC</mi></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="28pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="9077390bece81e4d9871adee022ac027"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-3035-2021-ie00006.svg" width="28pt" height="16pt" src="acp-21-3035-2021-ie00006.png"/></svg:svg> on those glaciers were close to or lower than those found in earlier (2007–2009), comparable surveys. Both <math xmlns="http://www.w3.org/1998/Math/MathML" id="M13" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>L</mi><mi mathvariant="normal">snow</mi><mi mathvariant="normal">EC</mi></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="28pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="6e6eb10485e0f9f412d7192ceff171df"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-3035-2021-ie00007.svg" width="28pt" height="16pt" src="acp-21-3035-2021-ie00007.png"/></svg:svg> and <math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>L</mi><mi mathvariant="normal">snow</mi><mi mathvariant="normal">WIOC</mi></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="31pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="b8bcc42792da2031f7593d43a09ba8ff"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-3035-2021-ie00008.svg" width="31pt" height="16pt" src="acp-21-3035-2021-ie00008.png"/></svg:svg> increased with elevation and snow accumulation, with dry deposition likely playing a minor role. Estimated area-averaged snowpack loads across Svalbard were 1.1 mg EC m −2 and 38.3 mg WIOC m −2 for the 2015–2016 winter. An ∼11 -year long dataset of spring surface snow measurements from the central Brøgger Peninsula was used to quantify the interannual variability of EC and WIOC deposition in snow. In most years, <math xmlns="http://www.w3.org/1998/Math/MathML" id="M18" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>C</mi><mi mathvariant="normal">snow</mi><mi mathvariant="normal">EC</mi></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="28pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="d0e1fd24bf495330b83980b121b0d1c4"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-3035-2021-ie00009.svg" width="28pt" height="16pt" src="acp-21-3035-2021-ie00009.png"/></svg:svg> and <math xmlns="http://www.w3.org/1998/Math/MathML" id="M19" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>C</mi><mi mathvariant="normal">snow</mi><mi mathvariant="normal">WIOC</mi></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="32pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="cdee4a6d6f61324881802e61a6d460d6"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-3035-2021-ie00010.svg" width="32pt" height="16pt" src="acp-21-3035-2021-ie00010.png"/></svg:svg> at Ny-Ålesund (50 m a.s.l.) were 2–5 times higher than on the nearby Austre Brøggerbreen glacier (456 m a.s.l.), and the median EC/WIOC in Ny-Ålesund was 6 times higher, suggesting a possible influence of local EC emission from Ny-Ålesund. While no long-term trends between 2011 and 2018 were found, <math xmlns="http://www.w3.org/1998/Math/MathML" id="M20" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>C</mi><mi mathvariant="normal">snow</mi><mi mathvariant="normal">EC</mi></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="28pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="7d2cf8a36a228ea1ae8f54db0d3911cd"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-3035-2021-ie00011.svg" width="28pt" height="16pt" src="acp-21-3035-2021-ie00011.png"/></svg:svg> and <math xmlns="http://www.w3.org/1998/Math/MathML" id="M21" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>C</mi><mi mathvariant="normal">snow</mi><mi mathvariant="normal">WIOC</mi></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="32pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="06babbcb2cbc99a99781cffa1f6b3198"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-3035-2021-ie00012.svg" width="32pt" height="16pt" src="acp-21-3035-2021-ie00012.png"/></svg:svg> showed synchronous variations at Ny-Ålesund and Austre Brøggerbreen. When compared with data from other circum-Arctic sites obtained by comparable methods, the median <math xmlns="http://www.w3.org/1998/Math/MathML" id="M22" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>C</mi><mi mathvariant="normal">snow</mi><mi mathvariant="normal">EC</mi></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="28pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="87eb2d1d96337a8f854bb7402a2142a8"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-3035-2021-ie00013.svg" width="28pt" height="16pt" src="acp-21-3035-2021-ie00013.png"/></svg:svg> on Svalbard falls between that found in central Greenland (lowest) and those in continental sectors of European Arctic (northern Scandinavia, Russia and Siberia; highest), which is consistent with large-scale patterns of BC in snow reported by surveys based on other methods.
format Text
author Zdanowicz, Christian
Gallet, Jean-Charles
Björkman, Mats P.
Larose, Catherine
Schuler, Thomas
Luks, Bartłomiej
Koziol, Krystyna
Spolaor, Andrea
Barbaro, Elena
Martma, Tõnu
Pelt, Ward
Wideqvist, Ulla
Ström, Johan
spellingShingle Zdanowicz, Christian
Gallet, Jean-Charles
Björkman, Mats P.
Larose, Catherine
Schuler, Thomas
Luks, Bartłomiej
Koziol, Krystyna
Spolaor, Andrea
Barbaro, Elena
Martma, Tõnu
Pelt, Ward
Wideqvist, Ulla
Ström, Johan
Elemental and water-insoluble organic carbon in Svalbard snow: a synthesis of observations during 2007–2018
author_facet Zdanowicz, Christian
Gallet, Jean-Charles
Björkman, Mats P.
Larose, Catherine
Schuler, Thomas
Luks, Bartłomiej
Koziol, Krystyna
Spolaor, Andrea
Barbaro, Elena
Martma, Tõnu
Pelt, Ward
Wideqvist, Ulla
Ström, Johan
author_sort Zdanowicz, Christian
title Elemental and water-insoluble organic carbon in Svalbard snow: a synthesis of observations during 2007–2018
title_short Elemental and water-insoluble organic carbon in Svalbard snow: a synthesis of observations during 2007–2018
title_full Elemental and water-insoluble organic carbon in Svalbard snow: a synthesis of observations during 2007–2018
title_fullStr Elemental and water-insoluble organic carbon in Svalbard snow: a synthesis of observations during 2007–2018
title_full_unstemmed Elemental and water-insoluble organic carbon in Svalbard snow: a synthesis of observations during 2007–2018
title_sort elemental and water-insoluble organic carbon in svalbard snow: a synthesis of observations during 2007–2018
publishDate 2021
url https://doi.org/10.5194/acp-21-3035-2021
https://acp.copernicus.org/articles/21/3035/2021/
geographic Arctic
Greenland
Ny-Ålesund
Svalbard
Svalbard Archipelago
geographic_facet Arctic
Greenland
Ny-Ålesund
Svalbard
Svalbard Archipelago
genre albedo
Arctic
glacier
glacier
glacier
Greenland
Ny Ålesund
Ny-Ålesund
Svalbard
Siberia
genre_facet albedo
Arctic
glacier
glacier
glacier
Greenland
Ny Ålesund
Ny-Ålesund
Svalbard
Siberia
op_source eISSN: 1680-7324
op_relation doi:10.5194/acp-21-3035-2021
https://acp.copernicus.org/articles/21/3035/2021/
op_doi https://doi.org/10.5194/acp-21-3035-2021
container_title Atmospheric Chemistry and Physics
container_volume 21
container_issue 4
container_start_page 3035
op_container_end_page 3057
_version_ 1766250433997701120
spelling ftcopernicus:oai:publications.copernicus.org:acp85766 2023-05-15T13:12:08+02:00 Elemental and water-insoluble organic carbon in Svalbard snow: a synthesis of observations during 2007–2018 Zdanowicz, Christian Gallet, Jean-Charles Björkman, Mats P. Larose, Catherine Schuler, Thomas Luks, Bartłomiej Koziol, Krystyna Spolaor, Andrea Barbaro, Elena Martma, Tõnu Pelt, Ward Wideqvist, Ulla Ström, Johan 2021-03-01 application/pdf https://doi.org/10.5194/acp-21-3035-2021 https://acp.copernicus.org/articles/21/3035/2021/ eng eng doi:10.5194/acp-21-3035-2021 https://acp.copernicus.org/articles/21/3035/2021/ eISSN: 1680-7324 Text 2021 ftcopernicus https://doi.org/10.5194/acp-21-3035-2021 2021-03-08T17:22:15Z Light-absorbing carbonaceous aerosols emitted by biomass or fossil fuel combustion can contribute to amplifying Arctic climate warming by lowering the albedo of snow. The Svalbard archipelago, being near to Europe and Russia, is particularly affected by these pollutants, and improved knowledge of their distribution in snow is needed to assess their impact. Here we present and synthesize new data obtained on Svalbard between 2007 and 2018, comprising measurements of elemental (EC) and water-insoluble organic carbon (WIOC) in snow from 37 separate sites. We used these data, combined with meteorological data and snowpack modeling, to investigate the variability of EC and WIOC deposition in Svalbard snow across latitude, longitude, elevation and time. Overall, EC concentrations ( <math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>C</mi><mi mathvariant="normal">snow</mi><mi mathvariant="normal">EC</mi></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="28pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="6a389eec55a273c593d28a49f6bb0e5c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-3035-2021-ie00001.svg" width="28pt" height="16pt" src="acp-21-3035-2021-ie00001.png"/></svg:svg> ) ranged from <1.0 to 266.6 ng g −1 , while WIOC concentrations ( <math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>C</mi><mi mathvariant="normal">snow</mi><mi mathvariant="normal">WIOC</mi></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="32pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="a7a7591973d6bc98536c066f560a7f1a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-3035-2021-ie00002.svg" width="32pt" height="16pt" src="acp-21-3035-2021-ie00002.png"/></svg:svg> ) ranged from <1 to 9426 ng g −1 , with the highest values observed near Ny-Ålesund. Calculated snowpack loadings ( <math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>L</mi><mi mathvariant="normal">snow</mi><mi mathvariant="normal">EC</mi></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="28pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="0526c74bea7fa17d099d312958f99776"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-3035-2021-ie00003.svg" width="28pt" height="16pt" src="acp-21-3035-2021-ie00003.png"/></svg:svg> , <math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>L</mi><mi mathvariant="normal">snow</mi><mi mathvariant="normal">WIOC</mi></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="31pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="ec30e4dcc00ac8ab2ded5658b95a2bb0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-3035-2021-ie00004.svg" width="31pt" height="16pt" src="acp-21-3035-2021-ie00004.png"/></svg:svg> ) on glaciers surveyed in spring 2016 were 0.1 to 2.6 mg m −2 and 2 to 173 mg m −2 , respectively. The median <math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>C</mi><mi mathvariant="normal">snow</mi><mi mathvariant="normal">EC</mi></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="28pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="ecbefc87bd48f7a34186257ed63cd7c0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-3035-2021-ie00005.svg" width="28pt" height="16pt" src="acp-21-3035-2021-ie00005.png"/></svg:svg> and the <math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>L</mi><mi mathvariant="normal">snow</mi><mi mathvariant="normal">EC</mi></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="28pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="9077390bece81e4d9871adee022ac027"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-3035-2021-ie00006.svg" width="28pt" height="16pt" src="acp-21-3035-2021-ie00006.png"/></svg:svg> on those glaciers were close to or lower than those found in earlier (2007–2009), comparable surveys. Both <math xmlns="http://www.w3.org/1998/Math/MathML" id="M13" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>L</mi><mi mathvariant="normal">snow</mi><mi mathvariant="normal">EC</mi></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="28pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="6e6eb10485e0f9f412d7192ceff171df"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-3035-2021-ie00007.svg" width="28pt" height="16pt" src="acp-21-3035-2021-ie00007.png"/></svg:svg> and <math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>L</mi><mi mathvariant="normal">snow</mi><mi mathvariant="normal">WIOC</mi></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="31pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="b8bcc42792da2031f7593d43a09ba8ff"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-3035-2021-ie00008.svg" width="31pt" height="16pt" src="acp-21-3035-2021-ie00008.png"/></svg:svg> increased with elevation and snow accumulation, with dry deposition likely playing a minor role. Estimated area-averaged snowpack loads across Svalbard were 1.1 mg EC m −2 and 38.3 mg WIOC m −2 for the 2015–2016 winter. An ∼11 -year long dataset of spring surface snow measurements from the central Brøgger Peninsula was used to quantify the interannual variability of EC and WIOC deposition in snow. In most years, <math xmlns="http://www.w3.org/1998/Math/MathML" id="M18" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>C</mi><mi mathvariant="normal">snow</mi><mi mathvariant="normal">EC</mi></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="28pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="d0e1fd24bf495330b83980b121b0d1c4"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-3035-2021-ie00009.svg" width="28pt" height="16pt" src="acp-21-3035-2021-ie00009.png"/></svg:svg> and <math xmlns="http://www.w3.org/1998/Math/MathML" id="M19" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>C</mi><mi mathvariant="normal">snow</mi><mi mathvariant="normal">WIOC</mi></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="32pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="cdee4a6d6f61324881802e61a6d460d6"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-3035-2021-ie00010.svg" width="32pt" height="16pt" src="acp-21-3035-2021-ie00010.png"/></svg:svg> at Ny-Ålesund (50 m a.s.l.) were 2–5 times higher than on the nearby Austre Brøggerbreen glacier (456 m a.s.l.), and the median EC/WIOC in Ny-Ålesund was 6 times higher, suggesting a possible influence of local EC emission from Ny-Ålesund. While no long-term trends between 2011 and 2018 were found, <math xmlns="http://www.w3.org/1998/Math/MathML" id="M20" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>C</mi><mi mathvariant="normal">snow</mi><mi mathvariant="normal">EC</mi></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="28pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="7d2cf8a36a228ea1ae8f54db0d3911cd"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-3035-2021-ie00011.svg" width="28pt" height="16pt" src="acp-21-3035-2021-ie00011.png"/></svg:svg> and <math xmlns="http://www.w3.org/1998/Math/MathML" id="M21" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>C</mi><mi mathvariant="normal">snow</mi><mi mathvariant="normal">WIOC</mi></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="32pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="06babbcb2cbc99a99781cffa1f6b3198"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-3035-2021-ie00012.svg" width="32pt" height="16pt" src="acp-21-3035-2021-ie00012.png"/></svg:svg> showed synchronous variations at Ny-Ålesund and Austre Brøggerbreen. When compared with data from other circum-Arctic sites obtained by comparable methods, the median <math xmlns="http://www.w3.org/1998/Math/MathML" id="M22" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>C</mi><mi mathvariant="normal">snow</mi><mi mathvariant="normal">EC</mi></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="28pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="87eb2d1d96337a8f854bb7402a2142a8"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-3035-2021-ie00013.svg" width="28pt" height="16pt" src="acp-21-3035-2021-ie00013.png"/></svg:svg> on Svalbard falls between that found in central Greenland (lowest) and those in continental sectors of European Arctic (northern Scandinavia, Russia and Siberia; highest), which is consistent with large-scale patterns of BC in snow reported by surveys based on other methods. Text albedo Arctic glacier glacier glacier Greenland Ny Ålesund Ny-Ålesund Svalbard Siberia Copernicus Publications: E-Journals Arctic Greenland Ny-Ålesund Svalbard Svalbard Archipelago Atmospheric Chemistry and Physics 21 4 3035 3057