Characterization of transport regimes and the polar dome during Arctic spring and summer using in situ aircraft measurements

The springtime composition of the Arctic lower troposphere is to a large extent controlled by the transport of midlatitude air masses into the Arctic. In contrast, precipitation and natural sources play the most important role during summer. Within the Arctic region sloping isentropes create a barri...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: Bozem, Heiko, Hoor, Peter, Kunkel, Daniel, Köllner, Franziska, Schneider, Johannes, Herber, Andreas, Schulz, Hannes, Leaitch, W. Richard, Aliabadi, Amir A., Willis, Megan D., Burkart, Julia, Abbatt, Jonathan P. D.
Format: Text
Language:English
Published: 2019
Subjects:
Online Access:https://doi.org/10.5194/acp-19-15049-2019
https://www.atmos-chem-phys.net/19/15049/2019/
id ftcopernicus:oai:publications.copernicus.org:acp74170
record_format openpolar
institution Open Polar
collection Copernicus Publications: E-Journals
op_collection_id ftcopernicus
language English
description The springtime composition of the Arctic lower troposphere is to a large extent controlled by the transport of midlatitude air masses into the Arctic. In contrast, precipitation and natural sources play the most important role during summer. Within the Arctic region sloping isentropes create a barrier to horizontal transport, known as the polar dome. The polar dome varies in space and time and exhibits a strong influence on the transport of air masses from midlatitudes, enhancing transport during winter and inhibiting transport during summer. We analyzed aircraft-based trace gas measurements in the Arctic from two NETCARE airborne field campaigns (July 2014 and April 2015) with the Alfred Wegener Institute Polar 6 aircraft, covering an area from Spitsbergen to Alaska (134 to 17 ∘ W and 68 to 83 ∘ N). Using these data we characterized the transport regimes of midlatitude air masses traveling to the high Arctic based on CO and CO 2 measurements as well as kinematic 10 d back trajectories. We found that dynamical isolation of the high Arctic lower troposphere leads to gradients of chemical tracers reflecting different local chemical lifetimes, sources, and sinks. In particular, gradients of CO and CO 2 allowed for a trace-gas-based definition of the polar dome boundary for the two measurement periods, which showed pronounced seasonal differences. Rather than a sharp boundary, we derived a transition zone from both campaigns. In July 2014 the polar dome boundary was at 73.5 ∘ N latitude and 299–303.5 K potential temperature. During April 2015 the polar dome boundary was on average located at 66–68.5 ∘ N and 283.5–287.5 K. Tracer–tracer scatter plots confirm different air mass properties inside and outside the polar dome in both spring and summer. Further, we explored the processes controlling the recent transport history of air masses within and outside the polar dome. Air masses within the springtime polar dome mainly experienced diabatic cooling while traveling over cold surfaces. In contrast, air masses in the summertime polar dome were diabatically heated due to insolation. During both seasons air masses outside the polar dome slowly descended into the Arctic lower troposphere from above through radiative cooling. Ascent to the middle and upper troposphere mainly took place outside the Arctic, followed by a northward motion. Air masses inside and outside the polar dome were also distinguished by different chemical compositions of both trace gases and aerosol particles. We found that the fraction of amine-containing particles, originating from Arctic marine biogenic sources, is enhanced inside the polar dome. In contrast, concentrations of refractory black carbon are highest outside the polar dome, indicating remote pollution sources. Synoptic-scale weather systems frequently disturb the transport barrier formed by the polar dome and foster exchange between air masses from midlatitudes and polar regions. During the second phase of the NETCARE 2014 measurements a pronounced low-pressure system south of Resolute Bay brought inflow from southern latitudes, which pushed the polar dome northward and significantly affected trace gas mixing ratios in the measurement region. Mean CO mixing ratios increased from 77.9±2.5 to 84.9±4.7 ppbv between these two regimes. At the same time CO 2 mixing ratios significantly decreased from 398.16 ± 1.01 to 393.81 ± 2.25 ppmv . Our results demonstrate the utility of applying a tracer-based diagnostic to determine the polar dome boundary for interpreting observations of atmospheric composition in the context of transport history.
format Text
author Bozem, Heiko
Hoor, Peter
Kunkel, Daniel
Köllner, Franziska
Schneider, Johannes
Herber, Andreas
Schulz, Hannes
Leaitch, W. Richard
Aliabadi, Amir A.
Willis, Megan D.
Burkart, Julia
Abbatt, Jonathan P. D.
spellingShingle Bozem, Heiko
Hoor, Peter
Kunkel, Daniel
Köllner, Franziska
Schneider, Johannes
Herber, Andreas
Schulz, Hannes
Leaitch, W. Richard
Aliabadi, Amir A.
Willis, Megan D.
Burkart, Julia
Abbatt, Jonathan P. D.
Characterization of transport regimes and the polar dome during Arctic spring and summer using in situ aircraft measurements
author_facet Bozem, Heiko
Hoor, Peter
Kunkel, Daniel
Köllner, Franziska
Schneider, Johannes
Herber, Andreas
Schulz, Hannes
Leaitch, W. Richard
Aliabadi, Amir A.
Willis, Megan D.
Burkart, Julia
Abbatt, Jonathan P. D.
author_sort Bozem, Heiko
title Characterization of transport regimes and the polar dome during Arctic spring and summer using in situ aircraft measurements
title_short Characterization of transport regimes and the polar dome during Arctic spring and summer using in situ aircraft measurements
title_full Characterization of transport regimes and the polar dome during Arctic spring and summer using in situ aircraft measurements
title_fullStr Characterization of transport regimes and the polar dome during Arctic spring and summer using in situ aircraft measurements
title_full_unstemmed Characterization of transport regimes and the polar dome during Arctic spring and summer using in situ aircraft measurements
title_sort characterization of transport regimes and the polar dome during arctic spring and summer using in situ aircraft measurements
publishDate 2019
url https://doi.org/10.5194/acp-19-15049-2019
https://www.atmos-chem-phys.net/19/15049/2019/
long_lat ENVELOPE(166.000,166.000,-85.367,-85.367)
ENVELOPE(-94.842,-94.842,74.677,74.677)
geographic Arctic
Dome The
Resolute Bay
geographic_facet Arctic
Dome The
Resolute Bay
genre Alfred Wegener Institute
Arctic
black carbon
Resolute Bay
Alaska
Spitsbergen
genre_facet Alfred Wegener Institute
Arctic
black carbon
Resolute Bay
Alaska
Spitsbergen
op_source eISSN: 1680-7324
op_relation doi:10.5194/acp-19-15049-2019
https://www.atmos-chem-phys.net/19/15049/2019/
op_doi https://doi.org/10.5194/acp-19-15049-2019
container_title Atmospheric Chemistry and Physics
container_volume 19
container_issue 23
container_start_page 15049
op_container_end_page 15071
_version_ 1766270563379052544
spelling ftcopernicus:oai:publications.copernicus.org:acp74170 2023-05-15T13:15:42+02:00 Characterization of transport regimes and the polar dome during Arctic spring and summer using in situ aircraft measurements Bozem, Heiko Hoor, Peter Kunkel, Daniel Köllner, Franziska Schneider, Johannes Herber, Andreas Schulz, Hannes Leaitch, W. Richard Aliabadi, Amir A. Willis, Megan D. Burkart, Julia Abbatt, Jonathan P. D. 2019-12-13 application/pdf https://doi.org/10.5194/acp-19-15049-2019 https://www.atmos-chem-phys.net/19/15049/2019/ eng eng doi:10.5194/acp-19-15049-2019 https://www.atmos-chem-phys.net/19/15049/2019/ eISSN: 1680-7324 Text 2019 ftcopernicus https://doi.org/10.5194/acp-19-15049-2019 2019-12-24T09:48:05Z The springtime composition of the Arctic lower troposphere is to a large extent controlled by the transport of midlatitude air masses into the Arctic. In contrast, precipitation and natural sources play the most important role during summer. Within the Arctic region sloping isentropes create a barrier to horizontal transport, known as the polar dome. The polar dome varies in space and time and exhibits a strong influence on the transport of air masses from midlatitudes, enhancing transport during winter and inhibiting transport during summer. We analyzed aircraft-based trace gas measurements in the Arctic from two NETCARE airborne field campaigns (July 2014 and April 2015) with the Alfred Wegener Institute Polar 6 aircraft, covering an area from Spitsbergen to Alaska (134 to 17 ∘ W and 68 to 83 ∘ N). Using these data we characterized the transport regimes of midlatitude air masses traveling to the high Arctic based on CO and CO 2 measurements as well as kinematic 10 d back trajectories. We found that dynamical isolation of the high Arctic lower troposphere leads to gradients of chemical tracers reflecting different local chemical lifetimes, sources, and sinks. In particular, gradients of CO and CO 2 allowed for a trace-gas-based definition of the polar dome boundary for the two measurement periods, which showed pronounced seasonal differences. Rather than a sharp boundary, we derived a transition zone from both campaigns. In July 2014 the polar dome boundary was at 73.5 ∘ N latitude and 299–303.5 K potential temperature. During April 2015 the polar dome boundary was on average located at 66–68.5 ∘ N and 283.5–287.5 K. Tracer–tracer scatter plots confirm different air mass properties inside and outside the polar dome in both spring and summer. Further, we explored the processes controlling the recent transport history of air masses within and outside the polar dome. Air masses within the springtime polar dome mainly experienced diabatic cooling while traveling over cold surfaces. In contrast, air masses in the summertime polar dome were diabatically heated due to insolation. During both seasons air masses outside the polar dome slowly descended into the Arctic lower troposphere from above through radiative cooling. Ascent to the middle and upper troposphere mainly took place outside the Arctic, followed by a northward motion. Air masses inside and outside the polar dome were also distinguished by different chemical compositions of both trace gases and aerosol particles. We found that the fraction of amine-containing particles, originating from Arctic marine biogenic sources, is enhanced inside the polar dome. In contrast, concentrations of refractory black carbon are highest outside the polar dome, indicating remote pollution sources. Synoptic-scale weather systems frequently disturb the transport barrier formed by the polar dome and foster exchange between air masses from midlatitudes and polar regions. During the second phase of the NETCARE 2014 measurements a pronounced low-pressure system south of Resolute Bay brought inflow from southern latitudes, which pushed the polar dome northward and significantly affected trace gas mixing ratios in the measurement region. Mean CO mixing ratios increased from 77.9±2.5 to 84.9±4.7 ppbv between these two regimes. At the same time CO 2 mixing ratios significantly decreased from 398.16 ± 1.01 to 393.81 ± 2.25 ppmv . Our results demonstrate the utility of applying a tracer-based diagnostic to determine the polar dome boundary for interpreting observations of atmospheric composition in the context of transport history. Text Alfred Wegener Institute Arctic black carbon Resolute Bay Alaska Spitsbergen Copernicus Publications: E-Journals Arctic Dome The ENVELOPE(166.000,166.000,-85.367,-85.367) Resolute Bay ENVELOPE(-94.842,-94.842,74.677,74.677) Atmospheric Chemistry and Physics 19 23 15049 15071