The thermal and dynamical state of the atmosphere during polar mesosphere winter echoes

In January 2005, a total of 18 rockets were launched from the Andøya Rocket Range in Northern Norway (69° N) into strong VHF radar echoes called "Polar Mesosphere Winter Echoes" (PMWE). The echoes were observed in the lower and middle mesosphere during large solar proton fluxes. In general...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: Lübken, F.-J., Strelnikov, B., Rapp, M., Singer, W., Latteck, R., Brattli, A., Hoppe, U.-P., Friedrich, M.
Format: Text
Language:English
Published: 2018
Subjects:
Online Access:https://doi.org/10.5194/acp-6-13-2006
https://www.atmos-chem-phys.net/6/13/2006/
id ftcopernicus:oai:publications.copernicus.org:acp4160
record_format openpolar
spelling ftcopernicus:oai:publications.copernicus.org:acp4160 2023-05-15T13:25:45+02:00 The thermal and dynamical state of the atmosphere during polar mesosphere winter echoes Lübken, F.-J. Strelnikov, B. Rapp, M. Singer, W. Latteck, R. Brattli, A. Hoppe, U.-P. Friedrich, M. 2018-06-28 application/pdf https://doi.org/10.5194/acp-6-13-2006 https://www.atmos-chem-phys.net/6/13/2006/ eng eng doi:10.5194/acp-6-13-2006 https://www.atmos-chem-phys.net/6/13/2006/ eISSN: 1680-7324 Text 2018 ftcopernicus https://doi.org/10.5194/acp-6-13-2006 2019-12-24T09:58:58Z In January 2005, a total of 18 rockets were launched from the Andøya Rocket Range in Northern Norway (69° N) into strong VHF radar echoes called "Polar Mesosphere Winter Echoes" (PMWE). The echoes were observed in the lower and middle mesosphere during large solar proton fluxes. In general, PMWE occur much more seldom compared to their summer counterparts PMSE (typical occurrence rates at 69° N are 1–3% vs.80%, respectively). Our in-situ measurements by falling sphere, chaff, and instrumented payloads provide detailed information about the thermal and dynamical state of the atmosphere and therefore allow an unprecedented study of the background atmosphere during PMWE. There are a number of independent observations indicating that neutral air turbulence has caused PMWE. Ion density fluctuations show a turbulence spectrum within PMWE and no fluctuations outside. Temperature lapse rates close to the adiabatic gradient are observed in the vicinity of PMWE indicating persistent turbulent mixing. The spectral broadening of radar echoes is consistent with turbulent velocity fluctuations. Turbulence also explains the mean occurrence height of PMWE (~68–75 km): viscosity increases rapidly with altitude and destroys any small scale fluctuations in the upper mesosphere, whereas electron densities are usually too low in the lower mesosphere to cause significant backscatter. The seasonal variation of echoes in the lower mesosphere is in agreement with a turbulence climatology derived from earlier sounding rocket flights. We have performed model calculations to study the radar backscatter from plasma fluctuations caused by neutral air turbulence. We find that volume reflectivities observed during PMWE are in quantitative agreement with theory. Apart from turbulence the most crucial requirement for PMWE is a sufficiently large number of electrons, for example produced by solar proton events. We have studied the sensitivity of the radar echo strength on various parameters, most important electron number density and turbulence intensity. Our observational and theoretical considerations do not provide any evidence that charged aerosol particles are needed to explain PMWE, in contrast to the summer echoes which owe their existence to charged ice particles. Text Andøya Northern Norway Copernicus Publications: E-Journals Andøya ENVELOPE(13.982,13.982,68.185,68.185) Norway Atmospheric Chemistry and Physics 6 1 13 24
institution Open Polar
collection Copernicus Publications: E-Journals
op_collection_id ftcopernicus
language English
description In January 2005, a total of 18 rockets were launched from the Andøya Rocket Range in Northern Norway (69° N) into strong VHF radar echoes called "Polar Mesosphere Winter Echoes" (PMWE). The echoes were observed in the lower and middle mesosphere during large solar proton fluxes. In general, PMWE occur much more seldom compared to their summer counterparts PMSE (typical occurrence rates at 69° N are 1–3% vs.80%, respectively). Our in-situ measurements by falling sphere, chaff, and instrumented payloads provide detailed information about the thermal and dynamical state of the atmosphere and therefore allow an unprecedented study of the background atmosphere during PMWE. There are a number of independent observations indicating that neutral air turbulence has caused PMWE. Ion density fluctuations show a turbulence spectrum within PMWE and no fluctuations outside. Temperature lapse rates close to the adiabatic gradient are observed in the vicinity of PMWE indicating persistent turbulent mixing. The spectral broadening of radar echoes is consistent with turbulent velocity fluctuations. Turbulence also explains the mean occurrence height of PMWE (~68–75 km): viscosity increases rapidly with altitude and destroys any small scale fluctuations in the upper mesosphere, whereas electron densities are usually too low in the lower mesosphere to cause significant backscatter. The seasonal variation of echoes in the lower mesosphere is in agreement with a turbulence climatology derived from earlier sounding rocket flights. We have performed model calculations to study the radar backscatter from plasma fluctuations caused by neutral air turbulence. We find that volume reflectivities observed during PMWE are in quantitative agreement with theory. Apart from turbulence the most crucial requirement for PMWE is a sufficiently large number of electrons, for example produced by solar proton events. We have studied the sensitivity of the radar echo strength on various parameters, most important electron number density and turbulence intensity. Our observational and theoretical considerations do not provide any evidence that charged aerosol particles are needed to explain PMWE, in contrast to the summer echoes which owe their existence to charged ice particles.
format Text
author Lübken, F.-J.
Strelnikov, B.
Rapp, M.
Singer, W.
Latteck, R.
Brattli, A.
Hoppe, U.-P.
Friedrich, M.
spellingShingle Lübken, F.-J.
Strelnikov, B.
Rapp, M.
Singer, W.
Latteck, R.
Brattli, A.
Hoppe, U.-P.
Friedrich, M.
The thermal and dynamical state of the atmosphere during polar mesosphere winter echoes
author_facet Lübken, F.-J.
Strelnikov, B.
Rapp, M.
Singer, W.
Latteck, R.
Brattli, A.
Hoppe, U.-P.
Friedrich, M.
author_sort Lübken, F.-J.
title The thermal and dynamical state of the atmosphere during polar mesosphere winter echoes
title_short The thermal and dynamical state of the atmosphere during polar mesosphere winter echoes
title_full The thermal and dynamical state of the atmosphere during polar mesosphere winter echoes
title_fullStr The thermal and dynamical state of the atmosphere during polar mesosphere winter echoes
title_full_unstemmed The thermal and dynamical state of the atmosphere during polar mesosphere winter echoes
title_sort thermal and dynamical state of the atmosphere during polar mesosphere winter echoes
publishDate 2018
url https://doi.org/10.5194/acp-6-13-2006
https://www.atmos-chem-phys.net/6/13/2006/
long_lat ENVELOPE(13.982,13.982,68.185,68.185)
geographic Andøya
Norway
geographic_facet Andøya
Norway
genre Andøya
Northern Norway
genre_facet Andøya
Northern Norway
op_source eISSN: 1680-7324
op_relation doi:10.5194/acp-6-13-2006
https://www.atmos-chem-phys.net/6/13/2006/
op_doi https://doi.org/10.5194/acp-6-13-2006
container_title Atmospheric Chemistry and Physics
container_volume 6
container_issue 1
container_start_page 13
op_container_end_page 24
_version_ 1766387764711915520