A review of biomass burning emissions part III: intensive optical properties of biomass burning particles

Because of its wide coverage over much of the globe, biomass burning has been widely studied in the context of direct radiative forcing. Such study is warranted as smoke particles scatter and at times absorb solar radiation efficiently. Further, as much of what is known about smoke transport and imp...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: Reid, J. S., Eck, T. F., Christopher, S. A., Koppmann, R., Dubovik, O., Eleuterio, D. P., Holben, B. N., Reid, E. A., Zhang, J.
Format: Text
Language:English
Published: 2018
Subjects:
Online Access:https://doi.org/10.5194/acp-5-827-2005
https://www.atmos-chem-phys.net/5/827/2005/
id ftcopernicus:oai:publications.copernicus.org:acp3926
record_format openpolar
spelling ftcopernicus:oai:publications.copernicus.org:acp3926 2023-05-15T13:06:57+02:00 A review of biomass burning emissions part III: intensive optical properties of biomass burning particles Reid, J. S. Eck, T. F. Christopher, S. A. Koppmann, R. Dubovik, O. Eleuterio, D. P. Holben, B. N. Reid, E. A. Zhang, J. 2018-10-09 application/pdf https://doi.org/10.5194/acp-5-827-2005 https://www.atmos-chem-phys.net/5/827/2005/ eng eng doi:10.5194/acp-5-827-2005 https://www.atmos-chem-phys.net/5/827/2005/ eISSN: 1680-7324 Text 2018 ftcopernicus https://doi.org/10.5194/acp-5-827-2005 2019-12-24T09:59:11Z Because of its wide coverage over much of the globe, biomass burning has been widely studied in the context of direct radiative forcing. Such study is warranted as smoke particles scatter and at times absorb solar radiation efficiently. Further, as much of what is known about smoke transport and impacts is based on remote sensing measurements, the optical properties of smoke particles have far reaching effects into numerous aspects of biomass burning studies. Global estimates of direct forcing have been widely varying, ranging from near zero to −1 Wm -2 . A significant part of this difference can be traced to varying assumptions on the optical properties of smoke. This manuscript is the third part of four examining biomass-burning emissions. Here we review and discuss the literature concerning measurement and modeling of optical properties of biomass-burning particles. These include available data from published sensitivity studies, field campaigns, and inversions from the Aerosol Robotic Network (AERONET) of Sun photometer sites. As a whole, optical properties reported in the literature are varied, reflecting both the dynamic nature of fires, variations in smoke aging processes and differences in measurement technique. We find that forward modeling or 'internal closure' studies ultimately are of little help in resolving outstanding measurement issues due to the high degree of degeneracy in solutions when using 'reasonable' input parameters. This is particularly notable with respect to index of refraction and the treatment of black carbon. Consequently, previous claims of column closure may in fact be more ambiguous. Differences between in situ and retrieved ω o values have implications for estimates of mass scattering and mass absorption efficiencies. In this manuscript we review and discuss this community dataset. Strengths and lapses are pointed out, future research topics are prioritized, and best estimates and uncertainties of key smoke particle parameters are provided. Text Aerosol Robotic Network Copernicus Publications: E-Journals Atmospheric Chemistry and Physics 5 3 827 849
institution Open Polar
collection Copernicus Publications: E-Journals
op_collection_id ftcopernicus
language English
description Because of its wide coverage over much of the globe, biomass burning has been widely studied in the context of direct radiative forcing. Such study is warranted as smoke particles scatter and at times absorb solar radiation efficiently. Further, as much of what is known about smoke transport and impacts is based on remote sensing measurements, the optical properties of smoke particles have far reaching effects into numerous aspects of biomass burning studies. Global estimates of direct forcing have been widely varying, ranging from near zero to −1 Wm -2 . A significant part of this difference can be traced to varying assumptions on the optical properties of smoke. This manuscript is the third part of four examining biomass-burning emissions. Here we review and discuss the literature concerning measurement and modeling of optical properties of biomass-burning particles. These include available data from published sensitivity studies, field campaigns, and inversions from the Aerosol Robotic Network (AERONET) of Sun photometer sites. As a whole, optical properties reported in the literature are varied, reflecting both the dynamic nature of fires, variations in smoke aging processes and differences in measurement technique. We find that forward modeling or 'internal closure' studies ultimately are of little help in resolving outstanding measurement issues due to the high degree of degeneracy in solutions when using 'reasonable' input parameters. This is particularly notable with respect to index of refraction and the treatment of black carbon. Consequently, previous claims of column closure may in fact be more ambiguous. Differences between in situ and retrieved ω o values have implications for estimates of mass scattering and mass absorption efficiencies. In this manuscript we review and discuss this community dataset. Strengths and lapses are pointed out, future research topics are prioritized, and best estimates and uncertainties of key smoke particle parameters are provided.
format Text
author Reid, J. S.
Eck, T. F.
Christopher, S. A.
Koppmann, R.
Dubovik, O.
Eleuterio, D. P.
Holben, B. N.
Reid, E. A.
Zhang, J.
spellingShingle Reid, J. S.
Eck, T. F.
Christopher, S. A.
Koppmann, R.
Dubovik, O.
Eleuterio, D. P.
Holben, B. N.
Reid, E. A.
Zhang, J.
A review of biomass burning emissions part III: intensive optical properties of biomass burning particles
author_facet Reid, J. S.
Eck, T. F.
Christopher, S. A.
Koppmann, R.
Dubovik, O.
Eleuterio, D. P.
Holben, B. N.
Reid, E. A.
Zhang, J.
author_sort Reid, J. S.
title A review of biomass burning emissions part III: intensive optical properties of biomass burning particles
title_short A review of biomass burning emissions part III: intensive optical properties of biomass burning particles
title_full A review of biomass burning emissions part III: intensive optical properties of biomass burning particles
title_fullStr A review of biomass burning emissions part III: intensive optical properties of biomass burning particles
title_full_unstemmed A review of biomass burning emissions part III: intensive optical properties of biomass burning particles
title_sort review of biomass burning emissions part iii: intensive optical properties of biomass burning particles
publishDate 2018
url https://doi.org/10.5194/acp-5-827-2005
https://www.atmos-chem-phys.net/5/827/2005/
genre Aerosol Robotic Network
genre_facet Aerosol Robotic Network
op_source eISSN: 1680-7324
op_relation doi:10.5194/acp-5-827-2005
https://www.atmos-chem-phys.net/5/827/2005/
op_doi https://doi.org/10.5194/acp-5-827-2005
container_title Atmospheric Chemistry and Physics
container_volume 5
container_issue 3
container_start_page 827
op_container_end_page 849
_version_ 1766028434463522816