A closer look at Arctic ozone loss and polar stratospheric clouds

The empirical relationship found between column-integrated Arctic ozone loss and the potential volume of polar stratospheric clouds inferred from meteorological analyses is recalculated in a self-consistent manner using the ERA Interim reanalyses. The relationship is found to hold at different altit...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: Harris, N. R. P., Lehmann, R., Rex, M., Gathen, P.
Format: Text
Language:English
Published: 2018
Subjects:
Online Access:https://doi.org/10.5194/acp-10-8499-2010
https://www.atmos-chem-phys.net/10/8499/2010/
id ftcopernicus:oai:publications.copernicus.org:acp2701
record_format openpolar
spelling ftcopernicus:oai:publications.copernicus.org:acp2701 2023-05-15T14:55:42+02:00 A closer look at Arctic ozone loss and polar stratospheric clouds Harris, N. R. P. Lehmann, R. Rex, M. Gathen, P. 2018-01-15 application/pdf https://doi.org/10.5194/acp-10-8499-2010 https://www.atmos-chem-phys.net/10/8499/2010/ eng eng doi:10.5194/acp-10-8499-2010 https://www.atmos-chem-phys.net/10/8499/2010/ eISSN: 1680-7324 Text 2018 ftcopernicus https://doi.org/10.5194/acp-10-8499-2010 2019-12-24T09:57:14Z The empirical relationship found between column-integrated Arctic ozone loss and the potential volume of polar stratospheric clouds inferred from meteorological analyses is recalculated in a self-consistent manner using the ERA Interim reanalyses. The relationship is found to hold at different altitudes as well as in the column. The use of a PSC formation threshold based on temperature dependent cold aerosol formation makes little difference to the original, empirical relationship. Analysis of the photochemistry leading to the ozone loss shows that activation is limited by the photolysis of nitric acid. This step produces nitrogen dioxide which is converted to chlorine nitrate which in turn reacts with hydrogen chloride on any polar stratospheric clouds to form active chlorine. The rate-limiting step is the photolysis of nitric acid: this occurs at the same rate every year and so the interannual variation in the ozone loss is caused by the extent and persistence of the polar stratospheric clouds. In early spring the ozone loss rate increases as the solar insolation increases the photolysis of the chlorine monoxide dimer in the near ultraviolet. However the length of the ozone loss period is determined by the photolysis of nitric acid which also occurs in the near ultraviolet. As a result of these compensating effects, the amount of the ozone loss is principally limited by the extent of original activation rather than its timing. In addition a number of factors, including the vertical changes in pressure and total inorganic chlorine as well as denitrification and renitrification, offset each other. As a result the extent of original activation is the most important factor influencing ozone loss. These results indicate that relatively simple parameterisations of Arctic ozone loss could be developed for use in coupled chemistry climate models. Text Arctic Copernicus Publications: E-Journals Arctic Atmospheric Chemistry and Physics 10 17 8499 8510
institution Open Polar
collection Copernicus Publications: E-Journals
op_collection_id ftcopernicus
language English
description The empirical relationship found between column-integrated Arctic ozone loss and the potential volume of polar stratospheric clouds inferred from meteorological analyses is recalculated in a self-consistent manner using the ERA Interim reanalyses. The relationship is found to hold at different altitudes as well as in the column. The use of a PSC formation threshold based on temperature dependent cold aerosol formation makes little difference to the original, empirical relationship. Analysis of the photochemistry leading to the ozone loss shows that activation is limited by the photolysis of nitric acid. This step produces nitrogen dioxide which is converted to chlorine nitrate which in turn reacts with hydrogen chloride on any polar stratospheric clouds to form active chlorine. The rate-limiting step is the photolysis of nitric acid: this occurs at the same rate every year and so the interannual variation in the ozone loss is caused by the extent and persistence of the polar stratospheric clouds. In early spring the ozone loss rate increases as the solar insolation increases the photolysis of the chlorine monoxide dimer in the near ultraviolet. However the length of the ozone loss period is determined by the photolysis of nitric acid which also occurs in the near ultraviolet. As a result of these compensating effects, the amount of the ozone loss is principally limited by the extent of original activation rather than its timing. In addition a number of factors, including the vertical changes in pressure and total inorganic chlorine as well as denitrification and renitrification, offset each other. As a result the extent of original activation is the most important factor influencing ozone loss. These results indicate that relatively simple parameterisations of Arctic ozone loss could be developed for use in coupled chemistry climate models.
format Text
author Harris, N. R. P.
Lehmann, R.
Rex, M.
Gathen, P.
spellingShingle Harris, N. R. P.
Lehmann, R.
Rex, M.
Gathen, P.
A closer look at Arctic ozone loss and polar stratospheric clouds
author_facet Harris, N. R. P.
Lehmann, R.
Rex, M.
Gathen, P.
author_sort Harris, N. R. P.
title A closer look at Arctic ozone loss and polar stratospheric clouds
title_short A closer look at Arctic ozone loss and polar stratospheric clouds
title_full A closer look at Arctic ozone loss and polar stratospheric clouds
title_fullStr A closer look at Arctic ozone loss and polar stratospheric clouds
title_full_unstemmed A closer look at Arctic ozone loss and polar stratospheric clouds
title_sort closer look at arctic ozone loss and polar stratospheric clouds
publishDate 2018
url https://doi.org/10.5194/acp-10-8499-2010
https://www.atmos-chem-phys.net/10/8499/2010/
geographic Arctic
geographic_facet Arctic
genre Arctic
genre_facet Arctic
op_source eISSN: 1680-7324
op_relation doi:10.5194/acp-10-8499-2010
https://www.atmos-chem-phys.net/10/8499/2010/
op_doi https://doi.org/10.5194/acp-10-8499-2010
container_title Atmospheric Chemistry and Physics
container_volume 10
container_issue 17
container_start_page 8499
op_container_end_page 8510
_version_ 1766327729591943168