The diurnal variability of atmospheric nitrogen oxides (NO and NO2) above the Antarctic Plateau driven by atmospheric stability and snow emissions

Atmospheric nitrogen oxides (NO and NO 2 ) were observed at Dome C, East Antarctica (75.1° S, 123.3° E, 3233 m), for a total of 50 days, from 10 December 2009 to 28 January 2010. Average (±1σ) mixing ratios at 1.0 m of NO and NO 2 , the latter measured for the first time on the East Antarctic Platea...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: Frey, M. M., Brough, N., France, J. L., Anderson, P. S., Traulle, O., King, M. D., Jones, A. E., Wolff, E. W., Savarino, J.
Format: Text
Language:English
Published: 2018
Subjects:
Online Access:https://doi.org/10.5194/acp-13-3045-2013
https://www.atmos-chem-phys.net/13/3045/2013/
id ftcopernicus:oai:publications.copernicus.org:acp16651
record_format openpolar
spelling ftcopernicus:oai:publications.copernicus.org:acp16651 2023-05-15T13:45:55+02:00 The diurnal variability of atmospheric nitrogen oxides (NO and NO2) above the Antarctic Plateau driven by atmospheric stability and snow emissions Frey, M. M. Brough, N. France, J. L. Anderson, P. S. Traulle, O. King, M. D. Jones, A. E. Wolff, E. W. Savarino, J. 2018-01-15 application/pdf https://doi.org/10.5194/acp-13-3045-2013 https://www.atmos-chem-phys.net/13/3045/2013/ eng eng doi:10.5194/acp-13-3045-2013 https://www.atmos-chem-phys.net/13/3045/2013/ eISSN: 1680-7324 Text 2018 ftcopernicus https://doi.org/10.5194/acp-13-3045-2013 2019-12-24T09:55:28Z Atmospheric nitrogen oxides (NO and NO 2 ) were observed at Dome C, East Antarctica (75.1° S, 123.3° E, 3233 m), for a total of 50 days, from 10 December 2009 to 28 January 2010. Average (±1σ) mixing ratios at 1.0 m of NO and NO 2 , the latter measured for the first time on the East Antarctic Plateau, were 111 (±89) and 98 (±89) pptv, respectively. Atmospheric mixing ratios are on average comparable to those observed previously at South Pole, but in contrast show strong diurnal variability: a minimum around local noon and a maximum in the early evening coincide with the development and collapse of a convective boundary layer. The asymmetric diurnal cycle of NO x concentrations and likely any other chemical tracer with a photolytic surface source is driven by the turbulent diffusivity and height of the atmospheric boundary layer, with the former controlling the magnitude of the vertical flux and the latter the size of the volume into which snow emissions are transported. In particular, the average (±1σ) NO x emission flux from 22 December 2009 to 28 January 2010, estimated from atmospheric concentration gradients, was 8.2 (±7.4) × 10 12 molecule m −2 s −1 belongs to the largest values measured so far in the polar regions and explains the 3-fold increase in mixing ratios in the early evening when the boundary layer becomes very shallow. Dome C is likely not representative for the entire East Antarctic Plateau but illustrates the need of an accurate description of the boundary layer above snow in atmospheric chemistry models. A simple nitrate photolysis model matches the observed median diurnal NO x flux during the day but has significant low bias during the night. The difference is significant taking into account the total random error in flux observations and model uncertainties due to the variability of NO 3 − concentrations in snow and potential contributions from NO 2 − photolysis. This highlights uncertainties in the parameterization of the photolytic NO x source in natural snowpacks, such as the poorly constrained quantum yield of nitrate photolysis. A steady-state analysis of the NO 2 : NO ratios indicates that peroxy (HO 2 + RO 2 ) or other radical concentrations in the boundary layer of Dome C are either higher than measured elsewhere in the polar regions or other processes leading to enhanced NO 2 have to be invoked. These results confirm the existence of a strongly oxidising canopy enveloping the East Antarctic Plateau in summer. Text Antarc* Antarctic Antarctica East Antarctica South pole South pole Copernicus Publications: E-Journals Antarctic East Antarctica South Pole The Antarctic Atmospheric Chemistry and Physics 13 6 3045 3062
institution Open Polar
collection Copernicus Publications: E-Journals
op_collection_id ftcopernicus
language English
description Atmospheric nitrogen oxides (NO and NO 2 ) were observed at Dome C, East Antarctica (75.1° S, 123.3° E, 3233 m), for a total of 50 days, from 10 December 2009 to 28 January 2010. Average (±1σ) mixing ratios at 1.0 m of NO and NO 2 , the latter measured for the first time on the East Antarctic Plateau, were 111 (±89) and 98 (±89) pptv, respectively. Atmospheric mixing ratios are on average comparable to those observed previously at South Pole, but in contrast show strong diurnal variability: a minimum around local noon and a maximum in the early evening coincide with the development and collapse of a convective boundary layer. The asymmetric diurnal cycle of NO x concentrations and likely any other chemical tracer with a photolytic surface source is driven by the turbulent diffusivity and height of the atmospheric boundary layer, with the former controlling the magnitude of the vertical flux and the latter the size of the volume into which snow emissions are transported. In particular, the average (±1σ) NO x emission flux from 22 December 2009 to 28 January 2010, estimated from atmospheric concentration gradients, was 8.2 (±7.4) × 10 12 molecule m −2 s −1 belongs to the largest values measured so far in the polar regions and explains the 3-fold increase in mixing ratios in the early evening when the boundary layer becomes very shallow. Dome C is likely not representative for the entire East Antarctic Plateau but illustrates the need of an accurate description of the boundary layer above snow in atmospheric chemistry models. A simple nitrate photolysis model matches the observed median diurnal NO x flux during the day but has significant low bias during the night. The difference is significant taking into account the total random error in flux observations and model uncertainties due to the variability of NO 3 − concentrations in snow and potential contributions from NO 2 − photolysis. This highlights uncertainties in the parameterization of the photolytic NO x source in natural snowpacks, such as the poorly constrained quantum yield of nitrate photolysis. A steady-state analysis of the NO 2 : NO ratios indicates that peroxy (HO 2 + RO 2 ) or other radical concentrations in the boundary layer of Dome C are either higher than measured elsewhere in the polar regions or other processes leading to enhanced NO 2 have to be invoked. These results confirm the existence of a strongly oxidising canopy enveloping the East Antarctic Plateau in summer.
format Text
author Frey, M. M.
Brough, N.
France, J. L.
Anderson, P. S.
Traulle, O.
King, M. D.
Jones, A. E.
Wolff, E. W.
Savarino, J.
spellingShingle Frey, M. M.
Brough, N.
France, J. L.
Anderson, P. S.
Traulle, O.
King, M. D.
Jones, A. E.
Wolff, E. W.
Savarino, J.
The diurnal variability of atmospheric nitrogen oxides (NO and NO2) above the Antarctic Plateau driven by atmospheric stability and snow emissions
author_facet Frey, M. M.
Brough, N.
France, J. L.
Anderson, P. S.
Traulle, O.
King, M. D.
Jones, A. E.
Wolff, E. W.
Savarino, J.
author_sort Frey, M. M.
title The diurnal variability of atmospheric nitrogen oxides (NO and NO2) above the Antarctic Plateau driven by atmospheric stability and snow emissions
title_short The diurnal variability of atmospheric nitrogen oxides (NO and NO2) above the Antarctic Plateau driven by atmospheric stability and snow emissions
title_full The diurnal variability of atmospheric nitrogen oxides (NO and NO2) above the Antarctic Plateau driven by atmospheric stability and snow emissions
title_fullStr The diurnal variability of atmospheric nitrogen oxides (NO and NO2) above the Antarctic Plateau driven by atmospheric stability and snow emissions
title_full_unstemmed The diurnal variability of atmospheric nitrogen oxides (NO and NO2) above the Antarctic Plateau driven by atmospheric stability and snow emissions
title_sort diurnal variability of atmospheric nitrogen oxides (no and no2) above the antarctic plateau driven by atmospheric stability and snow emissions
publishDate 2018
url https://doi.org/10.5194/acp-13-3045-2013
https://www.atmos-chem-phys.net/13/3045/2013/
geographic Antarctic
East Antarctica
South Pole
The Antarctic
geographic_facet Antarctic
East Antarctica
South Pole
The Antarctic
genre Antarc*
Antarctic
Antarctica
East Antarctica
South pole
South pole
genre_facet Antarc*
Antarctic
Antarctica
East Antarctica
South pole
South pole
op_source eISSN: 1680-7324
op_relation doi:10.5194/acp-13-3045-2013
https://www.atmos-chem-phys.net/13/3045/2013/
op_doi https://doi.org/10.5194/acp-13-3045-2013
container_title Atmospheric Chemistry and Physics
container_volume 13
container_issue 6
container_start_page 3045
op_container_end_page 3062
_version_ 1766232420339679232