Aerosol-induced closure of marine cloud cells: enhanced effects in the presence of precipitation

The Weather Research Forecasting (WRF) version 4.3 model is configured within a Lagrangian framework to quantify the impact of aerosols on evolving cloud fields. Kilometer-scale simulations utilizing meteorological boundary conditions are based on 10 case study days offering diverse meteorology duri...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: Christensen, Matthew W., Wu, Peng, Varble, Adam C., Xiao, Heng, Fast, Jerome D.
Format: Text
Language:English
Published: 2024
Subjects:
Online Access:https://doi.org/10.5194/acp-24-6455-2024
https://acp.copernicus.org/articles/24/6455/2024/
id ftcopernicus:oai:publications.copernicus.org:acp115469
record_format openpolar
spelling ftcopernicus:oai:publications.copernicus.org:acp115469 2024-09-15T18:23:57+00:00 Aerosol-induced closure of marine cloud cells: enhanced effects in the presence of precipitation Christensen, Matthew W. Wu, Peng Varble, Adam C. Xiao, Heng Fast, Jerome D. 2024-06-03 application/pdf https://doi.org/10.5194/acp-24-6455-2024 https://acp.copernicus.org/articles/24/6455/2024/ eng eng doi:10.5194/acp-24-6455-2024 https://acp.copernicus.org/articles/24/6455/2024/ eISSN: 1680-7324 Text 2024 ftcopernicus https://doi.org/10.5194/acp-24-6455-2024 2024-08-28T05:24:15Z The Weather Research Forecasting (WRF) version 4.3 model is configured within a Lagrangian framework to quantify the impact of aerosols on evolving cloud fields. Kilometer-scale simulations utilizing meteorological boundary conditions are based on 10 case study days offering diverse meteorology during the Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA). Measurements from aircraft, the ground-based Atmosphere Radiation Measurement (ARM) site at Graciosa Island in the Azores, and A-Train and geostationary satellites are utilized for validation, demonstrating good agreement with the WRF-simulated cloud and aerosol properties. Higher aerosol concentration leads to suppressed drizzle and increased cloud water content in all case study days. These changes lead to larger radiative cooling rates at cloud top, enhanced vertical velocity variance, and increased vertical and horizontal wind speed near the base of the lower-tropospheric inversion. As a result, marine cloud cell area expands, narrowing the gap between shallow clouds and increasing cloud optical thickness, liquid water content, and the top-of-atmosphere outgoing shortwave flux. While similar aerosol effects are observed in lightly to non-raining clouds, they tend to be smaller by comparison. These simulations show a relationship between cloud cell area expansion and the radiative adjustments caused by liquid water path and cloud fraction changes. The adjustments are positive and scale as 74 % and 51 %, respectively, relative to the Twomey effect. While higher-resolution large-eddy simulations may provide improved representation of cloud-top mixing processes, these results emphasize the importance of addressing mesoscale cloud-state transitions in the quantification of aerosol radiative forcing that cannot be attained from traditional climate models. Text North Atlantic Copernicus Publications: E-Journals Atmospheric Chemistry and Physics 24 11 6455 6476
institution Open Polar
collection Copernicus Publications: E-Journals
op_collection_id ftcopernicus
language English
description The Weather Research Forecasting (WRF) version 4.3 model is configured within a Lagrangian framework to quantify the impact of aerosols on evolving cloud fields. Kilometer-scale simulations utilizing meteorological boundary conditions are based on 10 case study days offering diverse meteorology during the Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA). Measurements from aircraft, the ground-based Atmosphere Radiation Measurement (ARM) site at Graciosa Island in the Azores, and A-Train and geostationary satellites are utilized for validation, demonstrating good agreement with the WRF-simulated cloud and aerosol properties. Higher aerosol concentration leads to suppressed drizzle and increased cloud water content in all case study days. These changes lead to larger radiative cooling rates at cloud top, enhanced vertical velocity variance, and increased vertical and horizontal wind speed near the base of the lower-tropospheric inversion. As a result, marine cloud cell area expands, narrowing the gap between shallow clouds and increasing cloud optical thickness, liquid water content, and the top-of-atmosphere outgoing shortwave flux. While similar aerosol effects are observed in lightly to non-raining clouds, they tend to be smaller by comparison. These simulations show a relationship between cloud cell area expansion and the radiative adjustments caused by liquid water path and cloud fraction changes. The adjustments are positive and scale as 74 % and 51 %, respectively, relative to the Twomey effect. While higher-resolution large-eddy simulations may provide improved representation of cloud-top mixing processes, these results emphasize the importance of addressing mesoscale cloud-state transitions in the quantification of aerosol radiative forcing that cannot be attained from traditional climate models.
format Text
author Christensen, Matthew W.
Wu, Peng
Varble, Adam C.
Xiao, Heng
Fast, Jerome D.
spellingShingle Christensen, Matthew W.
Wu, Peng
Varble, Adam C.
Xiao, Heng
Fast, Jerome D.
Aerosol-induced closure of marine cloud cells: enhanced effects in the presence of precipitation
author_facet Christensen, Matthew W.
Wu, Peng
Varble, Adam C.
Xiao, Heng
Fast, Jerome D.
author_sort Christensen, Matthew W.
title Aerosol-induced closure of marine cloud cells: enhanced effects in the presence of precipitation
title_short Aerosol-induced closure of marine cloud cells: enhanced effects in the presence of precipitation
title_full Aerosol-induced closure of marine cloud cells: enhanced effects in the presence of precipitation
title_fullStr Aerosol-induced closure of marine cloud cells: enhanced effects in the presence of precipitation
title_full_unstemmed Aerosol-induced closure of marine cloud cells: enhanced effects in the presence of precipitation
title_sort aerosol-induced closure of marine cloud cells: enhanced effects in the presence of precipitation
publishDate 2024
url https://doi.org/10.5194/acp-24-6455-2024
https://acp.copernicus.org/articles/24/6455/2024/
genre North Atlantic
genre_facet North Atlantic
op_source eISSN: 1680-7324
op_relation doi:10.5194/acp-24-6455-2024
https://acp.copernicus.org/articles/24/6455/2024/
op_doi https://doi.org/10.5194/acp-24-6455-2024
container_title Atmospheric Chemistry and Physics
container_volume 24
container_issue 11
container_start_page 6455
op_container_end_page 6476
_version_ 1810464241074831360