The impact of ENSO and NAO initial conditions and anomalies on the modeled response to Pinatubo-sized volcanic forcing

Strong, strato-volcanic eruptions are a substantial, intermittent source of natural climate variability. Initial atmospheric and oceanic conditions, such as El Niño Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO), also naturally impact climate on interannual timescales. We exami...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: Weierbach, Helen, LeGrande, Allegra N., Tsigaridis, Kostas
Format: Text
Language:English
Published: 2023
Subjects:
Online Access:https://doi.org/10.5194/acp-23-15491-2023
https://acp.copernicus.org/articles/23/15491/2023/
id ftcopernicus:oai:publications.copernicus.org:acp109490
record_format openpolar
spelling ftcopernicus:oai:publications.copernicus.org:acp109490 2024-09-15T18:24:18+00:00 The impact of ENSO and NAO initial conditions and anomalies on the modeled response to Pinatubo-sized volcanic forcing Weierbach, Helen LeGrande, Allegra N. Tsigaridis, Kostas 2023-12-19 application/pdf https://doi.org/10.5194/acp-23-15491-2023 https://acp.copernicus.org/articles/23/15491/2023/ eng eng doi:10.5194/acp-23-15491-2023 https://acp.copernicus.org/articles/23/15491/2023/ eISSN: 1680-7324 Text 2023 ftcopernicus https://doi.org/10.5194/acp-23-15491-2023 2024-08-28T05:24:15Z Strong, strato-volcanic eruptions are a substantial, intermittent source of natural climate variability. Initial atmospheric and oceanic conditions, such as El Niño Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO), also naturally impact climate on interannual timescales. We examine how initial conditions of ENSO and NAO contribute to the evolution of climate in the period following a Pinatubo-type eruption using a large (81-member) ensemble of model simulations in GISS model E2.1-G. Simulations are initialized from sampled conditions of ENSO and NAO using the protocol of the coordinated CMIP6 Volcanic Model Intercomparison Project (VolMIP) – where aerosols are forced with respect to time, latitude, and height. We analyze paired anomalous variations (perturbed – control) to understand changes in global and regional climate responses under positive, negative, and neutral ENSO and NAO conditions. In particular, we find that for paired anomalies there is a high probability of strong ( ∼1.5 ∘ C) warming of northern Eurasia surface air temperature in the first winter after the volcanic eruption for negative NAO ensembles coincident with decreased lower stratospheric temperature at the poles, decreased geopotential height, and strengthening of the stratospheric polar vortex. Climate anomalies (relative to average conditions across the control period), however, show no mean warming and suggest that the strength of this response is impacted by conditions present in the selected period of the control run. Again using paired anomalies, we also observe that under both +ENSO and −ENSO ensembles sea surface temperature decreases in the first post-eruptive boreal winter coinciding with surface cooling from volcanic aerosols. Neutral ENSO ensembles, on the other hand, show variability in their response with no clear trend in post-eruptive warming or cooling. In general, paired anomalies from unperturbed simulations give insight into the evolution of the climate response to volcanic forcing; however, when ... Text North Atlantic North Atlantic oscillation Copernicus Publications: E-Journals Atmospheric Chemistry and Physics 23 24 15491 15505
institution Open Polar
collection Copernicus Publications: E-Journals
op_collection_id ftcopernicus
language English
description Strong, strato-volcanic eruptions are a substantial, intermittent source of natural climate variability. Initial atmospheric and oceanic conditions, such as El Niño Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO), also naturally impact climate on interannual timescales. We examine how initial conditions of ENSO and NAO contribute to the evolution of climate in the period following a Pinatubo-type eruption using a large (81-member) ensemble of model simulations in GISS model E2.1-G. Simulations are initialized from sampled conditions of ENSO and NAO using the protocol of the coordinated CMIP6 Volcanic Model Intercomparison Project (VolMIP) – where aerosols are forced with respect to time, latitude, and height. We analyze paired anomalous variations (perturbed – control) to understand changes in global and regional climate responses under positive, negative, and neutral ENSO and NAO conditions. In particular, we find that for paired anomalies there is a high probability of strong ( ∼1.5 ∘ C) warming of northern Eurasia surface air temperature in the first winter after the volcanic eruption for negative NAO ensembles coincident with decreased lower stratospheric temperature at the poles, decreased geopotential height, and strengthening of the stratospheric polar vortex. Climate anomalies (relative to average conditions across the control period), however, show no mean warming and suggest that the strength of this response is impacted by conditions present in the selected period of the control run. Again using paired anomalies, we also observe that under both +ENSO and −ENSO ensembles sea surface temperature decreases in the first post-eruptive boreal winter coinciding with surface cooling from volcanic aerosols. Neutral ENSO ensembles, on the other hand, show variability in their response with no clear trend in post-eruptive warming or cooling. In general, paired anomalies from unperturbed simulations give insight into the evolution of the climate response to volcanic forcing; however, when ...
format Text
author Weierbach, Helen
LeGrande, Allegra N.
Tsigaridis, Kostas
spellingShingle Weierbach, Helen
LeGrande, Allegra N.
Tsigaridis, Kostas
The impact of ENSO and NAO initial conditions and anomalies on the modeled response to Pinatubo-sized volcanic forcing
author_facet Weierbach, Helen
LeGrande, Allegra N.
Tsigaridis, Kostas
author_sort Weierbach, Helen
title The impact of ENSO and NAO initial conditions and anomalies on the modeled response to Pinatubo-sized volcanic forcing
title_short The impact of ENSO and NAO initial conditions and anomalies on the modeled response to Pinatubo-sized volcanic forcing
title_full The impact of ENSO and NAO initial conditions and anomalies on the modeled response to Pinatubo-sized volcanic forcing
title_fullStr The impact of ENSO and NAO initial conditions and anomalies on the modeled response to Pinatubo-sized volcanic forcing
title_full_unstemmed The impact of ENSO and NAO initial conditions and anomalies on the modeled response to Pinatubo-sized volcanic forcing
title_sort impact of enso and nao initial conditions and anomalies on the modeled response to pinatubo-sized volcanic forcing
publishDate 2023
url https://doi.org/10.5194/acp-23-15491-2023
https://acp.copernicus.org/articles/23/15491/2023/
genre North Atlantic
North Atlantic oscillation
genre_facet North Atlantic
North Atlantic oscillation
op_source eISSN: 1680-7324
op_relation doi:10.5194/acp-23-15491-2023
https://acp.copernicus.org/articles/23/15491/2023/
op_doi https://doi.org/10.5194/acp-23-15491-2023
container_title Atmospheric Chemistry and Physics
container_volume 23
container_issue 24
container_start_page 15491
op_container_end_page 15505
_version_ 1810464625301389312