Multi-proxy evidence of unprecedented hydroclimatic change in a high Arctic proglacial lake:Linnévatnet, Svalbard
Svalbard is at the forefront of sea ice, marine, and terrestrial environmental change in the Arctic and so can be viewed as an example of what may be expected in other high latitude regions influenced by the North Atlantic Current. However, there are few highly resolved (subdecadal) paleoclimate rec...
Published in: | Arctic, Antarctic, and Alpine Research |
---|---|
Main Authors: | , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
2023
|
Subjects: | |
Online Access: | https://researchprofiles.ku.dk/da/publications/ee74664d-4424-4a7e-b08a-e9b6edd55b9b https://doi.org/10.1080/15230430.2023.2223403 https://curis.ku.dk/ws/files/361458278/Multi_proxy_evidence_of_unprecedented_hydroclimatic_change_in_a_high_Arctic_proglacial_lake_Linn_vatnet_Svalbard.pdf |
_version_ | 1829944664361271296 |
---|---|
author | Lapointe, Francois Retelle, Michael Bradley, Raymond S. Farnsworth, Wesley R. Støren, Eivind Cook, Timothy Rosario, Josiane |
author_facet | Lapointe, Francois Retelle, Michael Bradley, Raymond S. Farnsworth, Wesley R. Støren, Eivind Cook, Timothy Rosario, Josiane |
author_sort | Lapointe, Francois |
collection | University of Copenhagen: Research |
container_issue | 1 |
container_title | Arctic, Antarctic, and Alpine Research |
container_volume | 55 |
description | Svalbard is at the forefront of sea ice, marine, and terrestrial environmental change in the Arctic and so can be viewed as an example of what may be expected in other high latitude regions influenced by the North Atlantic Current. However, there are few highly resolved (subdecadal) paleoclimate records from this area that provide a long-term perspective on recent climatic changes. Here, we investigate a new composite sedimentary sequence from Linnévatnet, western Spitsbergen, spanning the last ~2,000 years. The chronology of this new composite laminated sequence is supported by four radiometric dates. Prior to conducting paleoclimate investigations on these lake sediments, we investigated the sediment sources entering Linnévatnet. Sediment samples collected around the lake’s watershed indicate that the main sediment sources come from the eastern carbonate valley wall as well as Linnéelva, the main river system. Micro-X-ray fluorescence (µ-XRF) results indicate that calcium is the largest component of sediment delivered to the delta-proximal basin, where the sedimentary record was collected. Percentage organics deduced from loss-on-ignition measurements reveal an antiphased relationship with calcium and magnetic susceptibility, implying that the sediment loading at the core site is largely modulated by the alternation of calcium derived from carbonates of the eastern flanks of the valley and by coal-bearing sandstone from Linnéelva, derived from the main river inflow that drains the central valley. Linnéelva is mainly fed by snow and glacier meltwaters from Linnébreen, the small valley glacier now located 7 km south of Linnévatnet. Because Linnébreen is underlain by coal-bearing sandstone, organic content in Linnévatnet lake sediments can be used as an indicator of glacier activity. Annually resolved parameters—that is, calcium and grain size—were found to be strongly correlated to temperature inferred from nearby Lomonosovfonna δ 18 O ice record as well as the wider reconstructed Northern Hemisphere winter ... |
format | Article in Journal/Newspaper |
genre | Antarctic and Alpine Research Arctic Arctic glacier Magnetic susceptibility north atlantic current North Atlantic Sea ice Svalbard Spitsbergen |
genre_facet | Antarctic and Alpine Research Arctic Arctic glacier Magnetic susceptibility north atlantic current North Atlantic Sea ice Svalbard Spitsbergen |
geographic | Arctic Linnébreen Linnéelva Linnévatnet Lomonosovfonna Svalbard |
geographic_facet | Arctic Linnébreen Linnéelva Linnévatnet Lomonosovfonna Svalbard |
id | ftcopenhagenunip:oai:pure.atira.dk:publications/ee74664d-4424-4a7e-b08a-e9b6edd55b9b |
institution | Open Polar |
language | English |
long_lat | ENVELOPE(13.933,13.933,77.967,77.967) ENVELOPE(13.751,13.751,78.077,78.077) ENVELOPE(13.824,13.824,78.042,78.042) ENVELOPE(17.663,17.663,78.774,78.774) |
op_collection_id | ftcopenhagenunip |
op_doi | https://doi.org/10.1080/15230430.2023.2223403 |
op_rights | info:eu-repo/semantics/openAccess |
op_source | Lapointe , F , Retelle , M , Bradley , R S , Farnsworth , W R , Støren , E , Cook , T & Rosario , J 2023 , ' Multi-proxy evidence of unprecedented hydroclimatic change in a high Arctic proglacial lake : Linnévatnet, Svalbard ' , Arctic, Antarctic, and Alpine Research , vol. 55 , no. 1 , 2223403 . https://doi.org/10.1080/15230430.2023.2223403 |
publishDate | 2023 |
record_format | openpolar |
spelling | ftcopenhagenunip:oai:pure.atira.dk:publications/ee74664d-4424-4a7e-b08a-e9b6edd55b9b 2025-04-20T14:27:15+00:00 Multi-proxy evidence of unprecedented hydroclimatic change in a high Arctic proglacial lake:Linnévatnet, Svalbard Lapointe, Francois Retelle, Michael Bradley, Raymond S. Farnsworth, Wesley R. Støren, Eivind Cook, Timothy Rosario, Josiane 2023 application/pdf https://researchprofiles.ku.dk/da/publications/ee74664d-4424-4a7e-b08a-e9b6edd55b9b https://doi.org/10.1080/15230430.2023.2223403 https://curis.ku.dk/ws/files/361458278/Multi_proxy_evidence_of_unprecedented_hydroclimatic_change_in_a_high_Arctic_proglacial_lake_Linn_vatnet_Svalbard.pdf eng eng info:eu-repo/semantics/openAccess Lapointe , F , Retelle , M , Bradley , R S , Farnsworth , W R , Støren , E , Cook , T & Rosario , J 2023 , ' Multi-proxy evidence of unprecedented hydroclimatic change in a high Arctic proglacial lake : Linnévatnet, Svalbard ' , Arctic, Antarctic, and Alpine Research , vol. 55 , no. 1 , 2223403 . https://doi.org/10.1080/15230430.2023.2223403 climate grain size Linnébreen Linnévatnet micro-X-ray fluorescence sediment provenance article 2023 ftcopenhagenunip https://doi.org/10.1080/15230430.2023.2223403 2025-03-31T01:36:51Z Svalbard is at the forefront of sea ice, marine, and terrestrial environmental change in the Arctic and so can be viewed as an example of what may be expected in other high latitude regions influenced by the North Atlantic Current. However, there are few highly resolved (subdecadal) paleoclimate records from this area that provide a long-term perspective on recent climatic changes. Here, we investigate a new composite sedimentary sequence from Linnévatnet, western Spitsbergen, spanning the last ~2,000 years. The chronology of this new composite laminated sequence is supported by four radiometric dates. Prior to conducting paleoclimate investigations on these lake sediments, we investigated the sediment sources entering Linnévatnet. Sediment samples collected around the lake’s watershed indicate that the main sediment sources come from the eastern carbonate valley wall as well as Linnéelva, the main river system. Micro-X-ray fluorescence (µ-XRF) results indicate that calcium is the largest component of sediment delivered to the delta-proximal basin, where the sedimentary record was collected. Percentage organics deduced from loss-on-ignition measurements reveal an antiphased relationship with calcium and magnetic susceptibility, implying that the sediment loading at the core site is largely modulated by the alternation of calcium derived from carbonates of the eastern flanks of the valley and by coal-bearing sandstone from Linnéelva, derived from the main river inflow that drains the central valley. Linnéelva is mainly fed by snow and glacier meltwaters from Linnébreen, the small valley glacier now located 7 km south of Linnévatnet. Because Linnébreen is underlain by coal-bearing sandstone, organic content in Linnévatnet lake sediments can be used as an indicator of glacier activity. Annually resolved parameters—that is, calcium and grain size—were found to be strongly correlated to temperature inferred from nearby Lomonosovfonna δ 18 O ice record as well as the wider reconstructed Northern Hemisphere winter ... Article in Journal/Newspaper Antarctic and Alpine Research Arctic Arctic glacier Magnetic susceptibility north atlantic current North Atlantic Sea ice Svalbard Spitsbergen University of Copenhagen: Research Arctic Linnébreen ENVELOPE(13.933,13.933,77.967,77.967) Linnéelva ENVELOPE(13.751,13.751,78.077,78.077) Linnévatnet ENVELOPE(13.824,13.824,78.042,78.042) Lomonosovfonna ENVELOPE(17.663,17.663,78.774,78.774) Svalbard Arctic, Antarctic, and Alpine Research 55 1 |
spellingShingle | climate grain size Linnébreen Linnévatnet micro-X-ray fluorescence sediment provenance Lapointe, Francois Retelle, Michael Bradley, Raymond S. Farnsworth, Wesley R. Støren, Eivind Cook, Timothy Rosario, Josiane Multi-proxy evidence of unprecedented hydroclimatic change in a high Arctic proglacial lake:Linnévatnet, Svalbard |
title | Multi-proxy evidence of unprecedented hydroclimatic change in a high Arctic proglacial lake:Linnévatnet, Svalbard |
title_full | Multi-proxy evidence of unprecedented hydroclimatic change in a high Arctic proglacial lake:Linnévatnet, Svalbard |
title_fullStr | Multi-proxy evidence of unprecedented hydroclimatic change in a high Arctic proglacial lake:Linnévatnet, Svalbard |
title_full_unstemmed | Multi-proxy evidence of unprecedented hydroclimatic change in a high Arctic proglacial lake:Linnévatnet, Svalbard |
title_short | Multi-proxy evidence of unprecedented hydroclimatic change in a high Arctic proglacial lake:Linnévatnet, Svalbard |
title_sort | multi-proxy evidence of unprecedented hydroclimatic change in a high arctic proglacial lake:linnévatnet, svalbard |
topic | climate grain size Linnébreen Linnévatnet micro-X-ray fluorescence sediment provenance |
topic_facet | climate grain size Linnébreen Linnévatnet micro-X-ray fluorescence sediment provenance |
url | https://researchprofiles.ku.dk/da/publications/ee74664d-4424-4a7e-b08a-e9b6edd55b9b https://doi.org/10.1080/15230430.2023.2223403 https://curis.ku.dk/ws/files/361458278/Multi_proxy_evidence_of_unprecedented_hydroclimatic_change_in_a_high_Arctic_proglacial_lake_Linn_vatnet_Svalbard.pdf |