A simulation-based comparison of confidence interval coverage, bias, and variance of alternative spatial biomass estimation methods used for the evaluation of Northern Shrimp biomass

In fisheries management, reliable estimates of population abundance metrics such as standing biomass are crucial for sustainability and balanced decision-making. The OGive MAPping (OGMAP) method, used by the Department of Fisheries and Oceans (DFO) in Newfoundland and Labrador for biomass estimation...

Full description

Bibliographic Details
Main Author: Williams, John-Philip
Format: Thesis
Language:English
Published: 2024
Subjects:
Online Access:https://spectrum.library.concordia.ca/id/eprint/993390/
https://spectrum.library.concordia.ca/id/eprint/993390/1/Williams_MSc_S2024.pdf
id ftconcordiauniv:oai:https://spectrum.library.concordia.ca:993390
record_format openpolar
spelling ftconcordiauniv:oai:https://spectrum.library.concordia.ca:993390 2024-06-23T07:54:47+00:00 A simulation-based comparison of confidence interval coverage, bias, and variance of alternative spatial biomass estimation methods used for the evaluation of Northern Shrimp biomass Williams, John-Philip 2024-01 text https://spectrum.library.concordia.ca/id/eprint/993390/ https://spectrum.library.concordia.ca/id/eprint/993390/1/Williams_MSc_S2024.pdf en eng https://spectrum.library.concordia.ca/id/eprint/993390/1/Williams_MSc_S2024.pdf Williams, John-Philip (2024) A simulation-based comparison of confidence interval coverage, bias, and variance of alternative spatial biomass estimation methods used for the evaluation of Northern Shrimp biomass. Masters thesis, Concordia University. term_access Thesis NonPeerReviewed 2024 ftconcordiauniv 2024-06-11T14:29:40Z In fisheries management, reliable estimates of population abundance metrics such as standing biomass are crucial for sustainability and balanced decision-making. The OGive MAPping (OGMAP) method, used by the Department of Fisheries and Oceans (DFO) in Newfoundland and Labrador for biomass estimation, addresses non-normally distributed populations but raises concerns about handling spatial data variations. I conducted a simulation-based comparative analysis comparing OGMAP against Generalized Additive Models (GAMs) and STRAtified Programs (STRAP) to answer the following question: “are the uncertainties of the estimates calculated from these different methods reliable?” Using Northern Shrimp, Pandalus borealis, as a reference, I simulated biomass landscapes, exploring parameters like landscape roughness, sampling intensity, and model settings. The analysis consistently showed OGMAP's failure to capture nominal confidence intervals (CIs) compared to alternatives, regardless of the treatment. OGMAP exhibited tighter intervals, raising concerns about overfitting and its inability to reflect the true landscape biomass. However, halving the automatically optimized bandwidths for OGMAP's probability distribution fields significantly improved its realized coverage. These findings underscore OGMAP's variability, shedding light on its limitations in decision-making by the Department of Fisheries and Oceans. I stress the pivotal role of reliable estimates in fisheries management. Additionally, I suggest that alternative methods, like GAMs, may offer more dependable forecasts given OGMAP's underperformance. This research prompts a review of the fisheries management framework relying on OGMAP, suggesting potential inadequacies in capturing the true uncertainty associated with spatially distributed stocks. Thesis Newfoundland northern shrimp Pandalus borealis Spectrum: Concordia University Research Repository (Montreal) Newfoundland
institution Open Polar
collection Spectrum: Concordia University Research Repository (Montreal)
op_collection_id ftconcordiauniv
language English
description In fisheries management, reliable estimates of population abundance metrics such as standing biomass are crucial for sustainability and balanced decision-making. The OGive MAPping (OGMAP) method, used by the Department of Fisheries and Oceans (DFO) in Newfoundland and Labrador for biomass estimation, addresses non-normally distributed populations but raises concerns about handling spatial data variations. I conducted a simulation-based comparative analysis comparing OGMAP against Generalized Additive Models (GAMs) and STRAtified Programs (STRAP) to answer the following question: “are the uncertainties of the estimates calculated from these different methods reliable?” Using Northern Shrimp, Pandalus borealis, as a reference, I simulated biomass landscapes, exploring parameters like landscape roughness, sampling intensity, and model settings. The analysis consistently showed OGMAP's failure to capture nominal confidence intervals (CIs) compared to alternatives, regardless of the treatment. OGMAP exhibited tighter intervals, raising concerns about overfitting and its inability to reflect the true landscape biomass. However, halving the automatically optimized bandwidths for OGMAP's probability distribution fields significantly improved its realized coverage. These findings underscore OGMAP's variability, shedding light on its limitations in decision-making by the Department of Fisheries and Oceans. I stress the pivotal role of reliable estimates in fisheries management. Additionally, I suggest that alternative methods, like GAMs, may offer more dependable forecasts given OGMAP's underperformance. This research prompts a review of the fisheries management framework relying on OGMAP, suggesting potential inadequacies in capturing the true uncertainty associated with spatially distributed stocks.
format Thesis
author Williams, John-Philip
spellingShingle Williams, John-Philip
A simulation-based comparison of confidence interval coverage, bias, and variance of alternative spatial biomass estimation methods used for the evaluation of Northern Shrimp biomass
author_facet Williams, John-Philip
author_sort Williams, John-Philip
title A simulation-based comparison of confidence interval coverage, bias, and variance of alternative spatial biomass estimation methods used for the evaluation of Northern Shrimp biomass
title_short A simulation-based comparison of confidence interval coverage, bias, and variance of alternative spatial biomass estimation methods used for the evaluation of Northern Shrimp biomass
title_full A simulation-based comparison of confidence interval coverage, bias, and variance of alternative spatial biomass estimation methods used for the evaluation of Northern Shrimp biomass
title_fullStr A simulation-based comparison of confidence interval coverage, bias, and variance of alternative spatial biomass estimation methods used for the evaluation of Northern Shrimp biomass
title_full_unstemmed A simulation-based comparison of confidence interval coverage, bias, and variance of alternative spatial biomass estimation methods used for the evaluation of Northern Shrimp biomass
title_sort simulation-based comparison of confidence interval coverage, bias, and variance of alternative spatial biomass estimation methods used for the evaluation of northern shrimp biomass
publishDate 2024
url https://spectrum.library.concordia.ca/id/eprint/993390/
https://spectrum.library.concordia.ca/id/eprint/993390/1/Williams_MSc_S2024.pdf
geographic Newfoundland
geographic_facet Newfoundland
genre Newfoundland
northern shrimp
Pandalus borealis
genre_facet Newfoundland
northern shrimp
Pandalus borealis
op_relation https://spectrum.library.concordia.ca/id/eprint/993390/1/Williams_MSc_S2024.pdf
Williams, John-Philip (2024) A simulation-based comparison of confidence interval coverage, bias, and variance of alternative spatial biomass estimation methods used for the evaluation of Northern Shrimp biomass. Masters thesis, Concordia University.
op_rights term_access
_version_ 1802647056736583680