Antarctic krill fecal pellets – a unique bacterial habitat and mediator of carbon export

The global climate is strongly regulated by the oceans, which store carbon away from the atmosphere for long periods. In an effort to understand the role of the oceans in the carbon cycle, it is necessary to understand the nuances of specific regional and functional marine ecosystems. The continenta...

Full description

Bibliographic Details
Main Author: Trinh, Rebecca
Format: Thesis
Language:English
Published: 2022
Subjects:
Online Access:https://doi.org/10.7916/tw9k-e470
id ftcolumbiauniv:oai:academiccommons.columbia.edu:10.7916/tw9k-e470
record_format openpolar
spelling ftcolumbiauniv:oai:academiccommons.columbia.edu:10.7916/tw9k-e470 2023-05-15T14:01:27+02:00 Antarctic krill fecal pellets – a unique bacterial habitat and mediator of carbon export Trinh, Rebecca 2022 https://doi.org/10.7916/tw9k-e470 English eng https://doi.org/10.7916/tw9k-e470 Biogeochemistry Marine ecology Carbon Antarctic krill Feces--Bacteriology Theses 2022 ftcolumbiauniv https://doi.org/10.7916/tw9k-e470 2022-10-15T22:20:06Z The global climate is strongly regulated by the oceans, which store carbon away from the atmosphere for long periods. In an effort to understand the role of the oceans in the carbon cycle, it is necessary to understand the nuances of specific regional and functional marine ecosystems. The continental shelf of the West Antarctic Peninsula (WAP) is one particularly important regional ecosystem that plays a vital role in the Southern Ocean carbon export. Within the seasonally productive marginal ice zone of the WAP, I sought to identify the long-term drivers of particulate organic carbon (POC) flux. The vast majority of exported POC on the WAP was previously found to be made up of krill fecal pellets. I provide evidence that supports the hypothesis that the inherent life cycle of krill drives the observed 5-year oscillation in POC export. At the end of their life cycle, when krill are at their largest body size, the WAP experiences anomalously high POC export events through the production and sinking of large, carbon-rich krill fecal pellets. Conversely, when krill are young and small, POC export is anomalously low. This pattern shows that ecology exerts a first-order control on the the biogeochemical cycles of the WAP. Upon identifying the source and driver of POC export on the WAP, I set out to determine the role heterotrophic bacteria play in POC flux attenuation. I collected krill fecal pellets on the WAP over three years and measured bacterial metabolic activity in terms of bacterial production and respiration, thereby identifying the amount of organic carbon within the sinking fecal pellets that is lost due to bacteria. Overall, fecal pellet POC turnover rate by bacteria is very low. The relationship between bacteria and POC is complex with each having an affect on the other. Despite varied reactions of the free-living bacterial populations to the presence of krill fecal pellets, a consistent pattern emerged in the concentration of nucleic acid within each bacterial cell. Access to fecal pellets increased the ... Thesis Antarc* Antarctic Antarctic Krill Antarctic Peninsula Southern Ocean Columbia University: Academic Commons Antarctic Southern Ocean Antarctic Peninsula
institution Open Polar
collection Columbia University: Academic Commons
op_collection_id ftcolumbiauniv
language English
topic Biogeochemistry
Marine ecology
Carbon
Antarctic krill
Feces--Bacteriology
spellingShingle Biogeochemistry
Marine ecology
Carbon
Antarctic krill
Feces--Bacteriology
Trinh, Rebecca
Antarctic krill fecal pellets – a unique bacterial habitat and mediator of carbon export
topic_facet Biogeochemistry
Marine ecology
Carbon
Antarctic krill
Feces--Bacteriology
description The global climate is strongly regulated by the oceans, which store carbon away from the atmosphere for long periods. In an effort to understand the role of the oceans in the carbon cycle, it is necessary to understand the nuances of specific regional and functional marine ecosystems. The continental shelf of the West Antarctic Peninsula (WAP) is one particularly important regional ecosystem that plays a vital role in the Southern Ocean carbon export. Within the seasonally productive marginal ice zone of the WAP, I sought to identify the long-term drivers of particulate organic carbon (POC) flux. The vast majority of exported POC on the WAP was previously found to be made up of krill fecal pellets. I provide evidence that supports the hypothesis that the inherent life cycle of krill drives the observed 5-year oscillation in POC export. At the end of their life cycle, when krill are at their largest body size, the WAP experiences anomalously high POC export events through the production and sinking of large, carbon-rich krill fecal pellets. Conversely, when krill are young and small, POC export is anomalously low. This pattern shows that ecology exerts a first-order control on the the biogeochemical cycles of the WAP. Upon identifying the source and driver of POC export on the WAP, I set out to determine the role heterotrophic bacteria play in POC flux attenuation. I collected krill fecal pellets on the WAP over three years and measured bacterial metabolic activity in terms of bacterial production and respiration, thereby identifying the amount of organic carbon within the sinking fecal pellets that is lost due to bacteria. Overall, fecal pellet POC turnover rate by bacteria is very low. The relationship between bacteria and POC is complex with each having an affect on the other. Despite varied reactions of the free-living bacterial populations to the presence of krill fecal pellets, a consistent pattern emerged in the concentration of nucleic acid within each bacterial cell. Access to fecal pellets increased the ...
format Thesis
author Trinh, Rebecca
author_facet Trinh, Rebecca
author_sort Trinh, Rebecca
title Antarctic krill fecal pellets – a unique bacterial habitat and mediator of carbon export
title_short Antarctic krill fecal pellets – a unique bacterial habitat and mediator of carbon export
title_full Antarctic krill fecal pellets – a unique bacterial habitat and mediator of carbon export
title_fullStr Antarctic krill fecal pellets – a unique bacterial habitat and mediator of carbon export
title_full_unstemmed Antarctic krill fecal pellets – a unique bacterial habitat and mediator of carbon export
title_sort antarctic krill fecal pellets – a unique bacterial habitat and mediator of carbon export
publishDate 2022
url https://doi.org/10.7916/tw9k-e470
geographic Antarctic
Southern Ocean
Antarctic Peninsula
geographic_facet Antarctic
Southern Ocean
Antarctic Peninsula
genre Antarc*
Antarctic
Antarctic Krill
Antarctic Peninsula
Southern Ocean
genre_facet Antarc*
Antarctic
Antarctic Krill
Antarctic Peninsula
Southern Ocean
op_relation https://doi.org/10.7916/tw9k-e470
op_doi https://doi.org/10.7916/tw9k-e470
_version_ 1766271278084259840