Metabolic engineering of the cyanobacterium Synechocystis sp. PCC 6803 for the production of astaxanthin
Department Head: Daniel R. Bush. 2010 Spring. Includes bibliographical references (pages 54-58). Air-breathing, diving vertebrates foster unique adaptations to exercise; namely, these animals are able to exercise for prolonged periods of time while "holding" their breath. Weddell seals (Le...
Main Author: | |
---|---|
Other Authors: | , , , |
Format: | Text |
Language: | English |
Published: |
Colorado State University. Libraries
2007
|
Subjects: | |
Online Access: | http://hdl.handle.net/10217/38379 |
id |
ftcolostateunidc:oai:mountainscholar.org:10217/38379 |
---|---|
record_format |
openpolar |
spelling |
ftcolostateunidc:oai:mountainscholar.org:10217/38379 2023-06-11T04:17:30+02:00 Metabolic engineering of the cyanobacterium Synechocystis sp. PCC 6803 for the production of astaxanthin Cable, Amber E. (Amber Elizabeth) Kanatous, Shane Florant, Gregory L. Mykles, Donald L. Bell, Christopher 2007-01-03T04:41:05Z masters theses application/pdf http://hdl.handle.net/10217/38379 English eng eng Colorado State University. Libraries 2000-2019 - CSU Theses and Dissertations 2010_Spring_Cable_Amber.pdf ETDF2010100001BIOL http://hdl.handle.net/10217/38379 Copyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright. Text 2007 ftcolostateunidc 2023-05-04T17:36:28Z Department Head: Daniel R. Bush. 2010 Spring. Includes bibliographical references (pages 54-58). Air-breathing, diving vertebrates foster unique adaptations to exercise; namely, these animals are able to exercise for prolonged periods of time while "holding" their breath. Weddell seals (Leptonychotes weddellii) routinely undergo progressive hypoxia and ischemia throughout the course of diving activity. In essence, this unique animal has overcome problems that are considered to be otherwise pathological in terrestrial vertebrates. The goal of this project was to verify the use of cross-species analysis and develop a proteomics protocol for use in diving mammals. These steps are necessary in order to ultimately use proteomics to identify age class protein signatures and better understand the molecular regulation of the physiological changes that couple the development of inactive Weddell seal pups into elite diving adults. Proteins from the primary swimming muscle (M. longissimus dorsi) of two distinct age classes, pups (3-5 weeks/nondivers) and adults (7+ years/expert divers), were visualized using two dimensional gel electrophoresis (2DE), quantified, and identified. This study validated the use of cross-species analysis, which was of paramount importance due to the fact that the pinniped genome is largely unidentified, and established a 2DE protocol tailored to suit the unique properties of diving mammal skeletal muscle tissue. To our knowledge, this was the first study in which proteomics was applied to study the proteome of a diving mammal. Understanding the control of these adaptations in the Weddell seal, which develops its ability to endure hypoxia associated with breath-hold exercise rather than being born ready to dive, has considerable potential for pharmacological implications for treating various human diseases, specifically those that involve hypoxic conditions such as cardiovascular and pulmonary diseases. Text Weddell Seal Weddell Seals Digital Collections of Colorado (Colorado State University) Weddell |
institution |
Open Polar |
collection |
Digital Collections of Colorado (Colorado State University) |
op_collection_id |
ftcolostateunidc |
language |
English |
description |
Department Head: Daniel R. Bush. 2010 Spring. Includes bibliographical references (pages 54-58). Air-breathing, diving vertebrates foster unique adaptations to exercise; namely, these animals are able to exercise for prolonged periods of time while "holding" their breath. Weddell seals (Leptonychotes weddellii) routinely undergo progressive hypoxia and ischemia throughout the course of diving activity. In essence, this unique animal has overcome problems that are considered to be otherwise pathological in terrestrial vertebrates. The goal of this project was to verify the use of cross-species analysis and develop a proteomics protocol for use in diving mammals. These steps are necessary in order to ultimately use proteomics to identify age class protein signatures and better understand the molecular regulation of the physiological changes that couple the development of inactive Weddell seal pups into elite diving adults. Proteins from the primary swimming muscle (M. longissimus dorsi) of two distinct age classes, pups (3-5 weeks/nondivers) and adults (7+ years/expert divers), were visualized using two dimensional gel electrophoresis (2DE), quantified, and identified. This study validated the use of cross-species analysis, which was of paramount importance due to the fact that the pinniped genome is largely unidentified, and established a 2DE protocol tailored to suit the unique properties of diving mammal skeletal muscle tissue. To our knowledge, this was the first study in which proteomics was applied to study the proteome of a diving mammal. Understanding the control of these adaptations in the Weddell seal, which develops its ability to endure hypoxia associated with breath-hold exercise rather than being born ready to dive, has considerable potential for pharmacological implications for treating various human diseases, specifically those that involve hypoxic conditions such as cardiovascular and pulmonary diseases. |
author2 |
Kanatous, Shane Florant, Gregory L. Mykles, Donald L. Bell, Christopher |
format |
Text |
author |
Cable, Amber E. (Amber Elizabeth) |
spellingShingle |
Cable, Amber E. (Amber Elizabeth) Metabolic engineering of the cyanobacterium Synechocystis sp. PCC 6803 for the production of astaxanthin |
author_facet |
Cable, Amber E. (Amber Elizabeth) |
author_sort |
Cable, Amber E. (Amber Elizabeth) |
title |
Metabolic engineering of the cyanobacterium Synechocystis sp. PCC 6803 for the production of astaxanthin |
title_short |
Metabolic engineering of the cyanobacterium Synechocystis sp. PCC 6803 for the production of astaxanthin |
title_full |
Metabolic engineering of the cyanobacterium Synechocystis sp. PCC 6803 for the production of astaxanthin |
title_fullStr |
Metabolic engineering of the cyanobacterium Synechocystis sp. PCC 6803 for the production of astaxanthin |
title_full_unstemmed |
Metabolic engineering of the cyanobacterium Synechocystis sp. PCC 6803 for the production of astaxanthin |
title_sort |
metabolic engineering of the cyanobacterium synechocystis sp. pcc 6803 for the production of astaxanthin |
publisher |
Colorado State University. Libraries |
publishDate |
2007 |
url |
http://hdl.handle.net/10217/38379 |
geographic |
Weddell |
geographic_facet |
Weddell |
genre |
Weddell Seal Weddell Seals |
genre_facet |
Weddell Seal Weddell Seals |
op_relation |
2000-2019 - CSU Theses and Dissertations 2010_Spring_Cable_Amber.pdf ETDF2010100001BIOL http://hdl.handle.net/10217/38379 |
op_rights |
Copyright and other restrictions may apply. User is responsible for compliance with all applicable laws. For information about copyright law, please see https://libguides.colostate.edu/copyright. |
_version_ |
1768376752246095872 |