Metabolic engineering of the cyanobacterium Synechocystis sp. PCC 6803 for the production of astaxanthin

2021 Fall. Includes bibliographical references. This dissertation characterizes and examines the large-scale sources of variability driving tropical North Atlantic deep-layer vertical wind shear (VWS). VWS is a key variable for the seasonal prediction of tropical cyclone (TC) activity and can be use...

Full description

Bibliographic Details
Main Author: Jones, Jhordanne J.
Other Authors: Bell, Michael M., Klotzbach, Philip J., Barnes, Elizabeth A., Maloney, Eric D., Florant, Gregory L.
Format: Text
Language:English
Published: Colorado State University. Libraries 2022
Subjects:
Online Access:https://hdl.handle.net/10217/234238
Description
Summary:2021 Fall. Includes bibliographical references. This dissertation characterizes and examines the large-scale sources of variability driving tropical North Atlantic deep-layer vertical wind shear (VWS). VWS is a key variable for the seasonal prediction of tropical cyclone (TC) activity and can be used to assess sources of predictability within a given season. Part 1 of the dissertation examines tropical versus subtropical impacts on TC activity by considering large-scale influences on boreal summer tropical zonal VWS variability, a key predictor of seasonal TC activity. Through an empirical orthogonal function analysis, I show that subtropical anticyclonic wave breaking (AWB) activity drives the second mode of variability in tropical zonal VWS, while El NiƱo-Southern Oscillation (ENSO) primarily drives the leading mode of tropical zonal VWS variability. Linear regressions of the four leading principal components against tropical North Atlantic zonal VWS and accumulated cyclone energy show that, while the leading mode holds much of the regression strength, some improvement can be achieved with the addition of the second and third modes. Furthermore, an index of AWB-associated VWS anomalies, a proxy for AWB impacts on the large-scale environment, may be a better indicator of summertime VWS anomalies. The utilization of this index may be used to better understand AWB's contribution to seasonal TC activity. Part 2 shows that predictors representing the environmental impacts of subtropical AWB on seasonal TC activity improve the skill of extended-range seasonal forecasts of TC activity. There is a significant correlation between boreal winter and boreal summer AWB activity via AWB-forced phases of the quasi-stationary North Atlantic Oscillation (NAO). Years with above-normal boreal summer AWB activity over the North Atlantic region also show above-normal AWB activity in the preceding boreal winter that forces a positive phase of the NAO that persists through the spring. These conditions are sustained by continued ...