Visualising and experiencing geological flows in Virtual Reality
International audience Resilience to natural hazards depends on a person's ability to envision an event and its consequences. While real life experience is precious, a real event experience is rare, and sometimes fatal. So, virtual reality provides a way to getting that experience more frequent...
Main Authors: | , , , , , , , , , |
---|---|
Other Authors: | , , , , , , , , , , , , , |
Format: | Conference Object |
Language: | English |
Published: |
HAL CCSD
2021
|
Subjects: | |
Online Access: | https://uca.hal.science/hal-03158832 https://doi.org/10.5194/egusphere-egu21-8801 |
id |
ftclermontuniv:oai:HAL:hal-03158832v1 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
HAL Clermont Auvergne (Université Blaise Pascal Clermont-Ferrand/Université d'Auvergne) |
op_collection_id |
ftclermontuniv |
language |
English |
topic |
[INFO.INFO-GR]Computer Science [cs]/Graphics [cs.GR] [SDU.STU.VO]Sciences of the Universe [physics]/Earth Sciences/Volcanology |
spellingShingle |
[INFO.INFO-GR]Computer Science [cs]/Graphics [cs.GR] [SDU.STU.VO]Sciences of the Universe [physics]/Earth Sciences/Volcanology Delage, E. van Wyk de Vries, Benjamin Philippe, Meven Conway, Susan J. Morino, Costanza Manrique Llerena, Nelida Aguilar Contreras, Rigoberto Soncco, Yhon Sæmundsson, Þorsteinn Kristinn Helgason, Jón Visualising and experiencing geological flows in Virtual Reality |
topic_facet |
[INFO.INFO-GR]Computer Science [cs]/Graphics [cs.GR] [SDU.STU.VO]Sciences of the Universe [physics]/Earth Sciences/Volcanology |
description |
International audience Resilience to natural hazards depends on a person's ability to envision an event and its consequences. While real life experience is precious, a real event experience is rare, and sometimes fatal. So, virtual reality provides a way to getting that experience more frequently and without the inconvenience of demise. Virtual reality can also enhance an event to make it more visible, as often things happen in bad weather, at night or in other inconvenient moments.The 3DTeLC software (an output from an ERASMUS+ project, http://3dtelc.lmv.uca.fr/) can handle high-resolution 3D topographic models and the user can study natural hazard phenomena with geological tools in virtual reality. Topography acquired from drone or plane acquisitions, can be made more accessible to researchers, public and stakeholders. In the virtual environment a person can interact with the scene from the first person, drone or plane point of view and can do geological interpretation at different visualization scales. Immersive and interactive visualization is an efficient communication tool (e.g. Tibaldi et al 2019 - Bulletin of Volcanology DOI: https://dx.doi.org/10.1007/s00445-020-01376-6).We have taken the 3DTeLC workflow and integrated a 2.5D flow simulation programme (VOLCFLOW-C). The dynamic outputs from VOLCFLOW-C are superimposed into a single visualization using a new tool developed from scratch, which we call VRVOLC. This coupled visualization adds dynamic and realistic understanding of events like lahars, lava flows, landslides and pyroclastic flows. We present two examples of this, one developed on the Digital Terrain Model of Chachani Volcano, Arequipa Peru, to assist with flood and lahar visualisation (in conjunction with INGEMMET, UNESCO IGCP project 692 Geoheritage for Resilience and Cap 20-25 Clermont Risk). And another with an Icelandic debris slide that occurred in late 2014 possibly related to permafrost degradation (in conjunction with the ANR PERMOLARDS project).We thank out 3DTeCL colleagues, ... |
author2 |
Observatoire de Physique du Globe de Clermont-Ferrand (OPGC) Institut national des sciences de l'Univers (INSU - CNRS)-Université Clermont Auvergne 2017-2020 (UCA 2017-2020 )-Centre National de la Recherche Scientifique (CNRS) Laboratoire Magmas et Volcans (LMV) Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA)-Observatoire de Physique du Globe de Clermont-Ferrand (OPGC) Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA) Laboratoire de Planétologie et Géodynamique UMR 6112 (LPG) Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST) Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) Environnements, Dynamiques et Territoires de Montagne (EDYTEM) Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS) Náttúrustofa Norðurlands vestra (NNv) Ríkisins, Sveitafélag Skagafjarðar Icelandic Meteorological Office (IMO) ANR-19-CE01-0010,Permolards,Les molards, marqueurs de l'évolution de la dégradation du pergélisol de montagne(2019) |
format |
Conference Object |
author |
Delage, E. van Wyk de Vries, Benjamin Philippe, Meven Conway, Susan J. Morino, Costanza Manrique Llerena, Nelida Aguilar Contreras, Rigoberto Soncco, Yhon Sæmundsson, Þorsteinn Kristinn Helgason, Jón |
author_facet |
Delage, E. van Wyk de Vries, Benjamin Philippe, Meven Conway, Susan J. Morino, Costanza Manrique Llerena, Nelida Aguilar Contreras, Rigoberto Soncco, Yhon Sæmundsson, Þorsteinn Kristinn Helgason, Jón |
author_sort |
Delage, E. |
title |
Visualising and experiencing geological flows in Virtual Reality |
title_short |
Visualising and experiencing geological flows in Virtual Reality |
title_full |
Visualising and experiencing geological flows in Virtual Reality |
title_fullStr |
Visualising and experiencing geological flows in Virtual Reality |
title_full_unstemmed |
Visualising and experiencing geological flows in Virtual Reality |
title_sort |
visualising and experiencing geological flows in virtual reality |
publisher |
HAL CCSD |
publishDate |
2021 |
url |
https://uca.hal.science/hal-03158832 https://doi.org/10.5194/egusphere-egu21-8801 |
op_coverage |
Online, Germany |
genre |
permafrost |
genre_facet |
permafrost |
op_source |
EGU https://uca.hal.science/hal-03158832 EGU, Apr 2021, Online, Germany. ⟨10.5194/egusphere-egu21-8801⟩ https://meetingorganizer.copernicus.org/EGU21/sessionprogramme |
op_relation |
info:eu-repo/semantics/altIdentifier/doi/10.5194/egusphere-egu21-8801 hal-03158832 https://uca.hal.science/hal-03158832 doi:10.5194/egusphere-egu21-8801 |
op_doi |
https://doi.org/10.5194/egusphere-egu21-8801 |
_version_ |
1802649060460462080 |
spelling |
ftclermontuniv:oai:HAL:hal-03158832v1 2024-06-23T07:56:09+00:00 Visualising and experiencing geological flows in Virtual Reality Delage, E. van Wyk de Vries, Benjamin Philippe, Meven Conway, Susan J. Morino, Costanza Manrique Llerena, Nelida Aguilar Contreras, Rigoberto Soncco, Yhon Sæmundsson, Þorsteinn Kristinn Helgason, Jón Observatoire de Physique du Globe de Clermont-Ferrand (OPGC) Institut national des sciences de l'Univers (INSU - CNRS)-Université Clermont Auvergne 2017-2020 (UCA 2017-2020 )-Centre National de la Recherche Scientifique (CNRS) Laboratoire Magmas et Volcans (LMV) Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA)-Observatoire de Physique du Globe de Clermont-Ferrand (OPGC) Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA) Laboratoire de Planétologie et Géodynamique UMR 6112 (LPG) Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST) Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) Environnements, Dynamiques et Territoires de Montagne (EDYTEM) Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS) Náttúrustofa Norðurlands vestra (NNv) Ríkisins, Sveitafélag Skagafjarðar Icelandic Meteorological Office (IMO) ANR-19-CE01-0010,Permolards,Les molards, marqueurs de l'évolution de la dégradation du pergélisol de montagne(2019) Online, Germany 2021-04-19 https://uca.hal.science/hal-03158832 https://doi.org/10.5194/egusphere-egu21-8801 en eng HAL CCSD info:eu-repo/semantics/altIdentifier/doi/10.5194/egusphere-egu21-8801 hal-03158832 https://uca.hal.science/hal-03158832 doi:10.5194/egusphere-egu21-8801 EGU https://uca.hal.science/hal-03158832 EGU, Apr 2021, Online, Germany. ⟨10.5194/egusphere-egu21-8801⟩ https://meetingorganizer.copernicus.org/EGU21/sessionprogramme [INFO.INFO-GR]Computer Science [cs]/Graphics [cs.GR] [SDU.STU.VO]Sciences of the Universe [physics]/Earth Sciences/Volcanology info:eu-repo/semantics/conferenceObject Conference papers 2021 ftclermontuniv https://doi.org/10.5194/egusphere-egu21-8801 2024-06-11T00:01:32Z International audience Resilience to natural hazards depends on a person's ability to envision an event and its consequences. While real life experience is precious, a real event experience is rare, and sometimes fatal. So, virtual reality provides a way to getting that experience more frequently and without the inconvenience of demise. Virtual reality can also enhance an event to make it more visible, as often things happen in bad weather, at night or in other inconvenient moments.The 3DTeLC software (an output from an ERASMUS+ project, http://3dtelc.lmv.uca.fr/) can handle high-resolution 3D topographic models and the user can study natural hazard phenomena with geological tools in virtual reality. Topography acquired from drone or plane acquisitions, can be made more accessible to researchers, public and stakeholders. In the virtual environment a person can interact with the scene from the first person, drone or plane point of view and can do geological interpretation at different visualization scales. Immersive and interactive visualization is an efficient communication tool (e.g. Tibaldi et al 2019 - Bulletin of Volcanology DOI: https://dx.doi.org/10.1007/s00445-020-01376-6).We have taken the 3DTeLC workflow and integrated a 2.5D flow simulation programme (VOLCFLOW-C). The dynamic outputs from VOLCFLOW-C are superimposed into a single visualization using a new tool developed from scratch, which we call VRVOLC. This coupled visualization adds dynamic and realistic understanding of events like lahars, lava flows, landslides and pyroclastic flows. We present two examples of this, one developed on the Digital Terrain Model of Chachani Volcano, Arequipa Peru, to assist with flood and lahar visualisation (in conjunction with INGEMMET, UNESCO IGCP project 692 Geoheritage for Resilience and Cap 20-25 Clermont Risk). And another with an Icelandic debris slide that occurred in late 2014 possibly related to permafrost degradation (in conjunction with the ANR PERMOLARDS project).We thank out 3DTeCL colleagues, ... Conference Object permafrost HAL Clermont Auvergne (Université Blaise Pascal Clermont-Ferrand/Université d'Auvergne) |