Why Archaean TTG cannot be generated by MORB melting in subduction zones

International audience Until recently it was assumed that the Archaean continental crust (made of TTGs: tonalites, trondhjemites, and granodiorites) was generated through partial melting of MORB-like basalts in hot subduction environments, where the subducted oceanic crust melted at high pressure, l...

Full description

Bibliographic Details
Published in:Lithos
Main Authors: Martin, Hervé, Moyen, Jean-François, Guitreau, Martin, Blichert-Toft, Janne, Le Pennec, Jean-Luc
Other Authors: Laboratoire Magmas et Volcans (LMV), Observatoire de Physique du Globe de Clermont-Ferrand (OPGC), Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Department of Earth Sciences UNH Durham, University of New Hampshire (UNH), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: CCSD 2014
Subjects:
Online Access:https://hal.science/hal-01134223
https://doi.org/10.1016/j.lithos.2014.02.017
_version_ 1828035692462080000
author Martin, Hervé
Moyen, Jean-François
Guitreau, Martin
Blichert-Toft, Janne
Le Pennec, Jean-Luc
author2 Laboratoire Magmas et Volcans (LMV)
Observatoire de Physique du Globe de Clermont-Ferrand (OPGC)
Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS)
Department of Earth Sciences UNH Durham
University of New Hampshire (UNH)
Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE)
École normale supérieure de Lyon (ENS de Lyon)
Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS)
author_facet Martin, Hervé
Moyen, Jean-François
Guitreau, Martin
Blichert-Toft, Janne
Le Pennec, Jean-Luc
author_sort Martin, Hervé
collection HAL Clermont Auvergne (Université Blaise Pascal Clermont-Ferrand/Université d'Auvergne)
container_start_page 1
container_title Lithos
container_volume 198-199
description International audience Until recently it was assumed that the Archaean continental crust (made of TTGs: tonalites, trondhjemites, and granodiorites) was generated through partial melting of MORB-like basalts in hot subduction environments, where the subducted oceanic crust melted at high pressure, leaving a garnet-bearing amphibolitic or eclogitic residue. However, recent geochemical models as well as basalt melting experiments have precluded MORB as a plausible source for TTGs. Rather, geochemical and experimental evidences indicate that formation of TTG required a LILE-enriched source, similar to oceanic plateau basalts. Moreover, subduction is a continuous process, while continental growth is episodic. Several “super-growth events” have been identified at ~ 4.2, ~ 3.8, ~ 3.2, ~ 2.7, ~ 1.8, ~ 1.1, and ~ 0.5 Ga, which is inconsistent with the regular pattern that would be expected from a subduction-driven process. In order to account for this periodicity, it has been proposed that, as subduction proceeds, descending residual slabs accumulate at the 660-km seismic discontinuity. When stored oceanic crust exceeds a certain mass threshold, it rapidly sinks into the mantle as a cold avalanche, which induces the ascent of mantle plumes that in turn produce large amounts of magmas resulting in oceanic plateaus.However, melting at the base of thick oceanic plateaus does not appear to be a realistic process that can account for TTG genesis. Modern oceanic plateaus contain only small volumes (≤ 5%) of felsic magmas generally formed by high degrees of fractional crystallization of basaltic magmas. The composition of these felsic magmas drastically differs from that of TTGs. In Iceland, the interaction between a mantle plume and the mid-Atlantic ridge gives rise to an anomalously (Archaean-like) high geothermal gradient resulting in thick basaltic crust able to melt at shallow depth. Even in this favorable context though, the characteristic Archaean TTG trace element signature is not being produced. Consequently, ...
format Article in Journal/Newspaper
genre Iceland
genre_facet Iceland
geographic Mid-Atlantic Ridge
geographic_facet Mid-Atlantic Ridge
id ftclermontuniv:oai:HAL:hal-01134223v1
institution Open Polar
language English
op_collection_id ftclermontuniv
op_container_end_page 13
op_doi https://doi.org/10.1016/j.lithos.2014.02.017
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1016/j.lithos.2014.02.017
doi:10.1016/j.lithos.2014.02.017
op_source ISSN: 0024-4937
EISSN: 1872-6143
Lithos
https://hal.science/hal-01134223
Lithos, 2014, 198-199, pp.1-13. ⟨10.1016/j.lithos.2014.02.017⟩
publishDate 2014
publisher CCSD
record_format openpolar
spelling ftclermontuniv:oai:HAL:hal-01134223v1 2025-03-30T15:16:41+00:00 Why Archaean TTG cannot be generated by MORB melting in subduction zones Martin, Hervé Moyen, Jean-François Guitreau, Martin Blichert-Toft, Janne Le Pennec, Jean-Luc Laboratoire Magmas et Volcans (LMV) Observatoire de Physique du Globe de Clermont-Ferrand (OPGC) Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS) Department of Earth Sciences UNH Durham University of New Hampshire (UNH) Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE) École normale supérieure de Lyon (ENS de Lyon) Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL) Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS) 2014 https://hal.science/hal-01134223 https://doi.org/10.1016/j.lithos.2014.02.017 en eng CCSD Elsevier info:eu-repo/semantics/altIdentifier/doi/10.1016/j.lithos.2014.02.017 doi:10.1016/j.lithos.2014.02.017 ISSN: 0024-4937 EISSN: 1872-6143 Lithos https://hal.science/hal-01134223 Lithos, 2014, 198-199, pp.1-13. ⟨10.1016/j.lithos.2014.02.017⟩ Archaean TTG Subduction Oceanic plateau Carnegie ridge Basalt partial melting Crustal growth [SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry [SDU.STU.VO]Sciences of the Universe [physics]/Earth Sciences/Volcanology info:eu-repo/semantics/article Journal articles 2014 ftclermontuniv https://doi.org/10.1016/j.lithos.2014.02.017 2025-03-03T01:02:34Z International audience Until recently it was assumed that the Archaean continental crust (made of TTGs: tonalites, trondhjemites, and granodiorites) was generated through partial melting of MORB-like basalts in hot subduction environments, where the subducted oceanic crust melted at high pressure, leaving a garnet-bearing amphibolitic or eclogitic residue. However, recent geochemical models as well as basalt melting experiments have precluded MORB as a plausible source for TTGs. Rather, geochemical and experimental evidences indicate that formation of TTG required a LILE-enriched source, similar to oceanic plateau basalts. Moreover, subduction is a continuous process, while continental growth is episodic. Several “super-growth events” have been identified at ~ 4.2, ~ 3.8, ~ 3.2, ~ 2.7, ~ 1.8, ~ 1.1, and ~ 0.5 Ga, which is inconsistent with the regular pattern that would be expected from a subduction-driven process. In order to account for this periodicity, it has been proposed that, as subduction proceeds, descending residual slabs accumulate at the 660-km seismic discontinuity. When stored oceanic crust exceeds a certain mass threshold, it rapidly sinks into the mantle as a cold avalanche, which induces the ascent of mantle plumes that in turn produce large amounts of magmas resulting in oceanic plateaus.However, melting at the base of thick oceanic plateaus does not appear to be a realistic process that can account for TTG genesis. Modern oceanic plateaus contain only small volumes (≤ 5%) of felsic magmas generally formed by high degrees of fractional crystallization of basaltic magmas. The composition of these felsic magmas drastically differs from that of TTGs. In Iceland, the interaction between a mantle plume and the mid-Atlantic ridge gives rise to an anomalously (Archaean-like) high geothermal gradient resulting in thick basaltic crust able to melt at shallow depth. Even in this favorable context though, the characteristic Archaean TTG trace element signature is not being produced. Consequently, ... Article in Journal/Newspaper Iceland HAL Clermont Auvergne (Université Blaise Pascal Clermont-Ferrand/Université d'Auvergne) Mid-Atlantic Ridge Lithos 198-199 1 13
spellingShingle Archaean TTG
Subduction
Oceanic plateau
Carnegie ridge
Basalt partial melting
Crustal growth
[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry
[SDU.STU.VO]Sciences of the Universe [physics]/Earth Sciences/Volcanology
Martin, Hervé
Moyen, Jean-François
Guitreau, Martin
Blichert-Toft, Janne
Le Pennec, Jean-Luc
Why Archaean TTG cannot be generated by MORB melting in subduction zones
title Why Archaean TTG cannot be generated by MORB melting in subduction zones
title_full Why Archaean TTG cannot be generated by MORB melting in subduction zones
title_fullStr Why Archaean TTG cannot be generated by MORB melting in subduction zones
title_full_unstemmed Why Archaean TTG cannot be generated by MORB melting in subduction zones
title_short Why Archaean TTG cannot be generated by MORB melting in subduction zones
title_sort why archaean ttg cannot be generated by morb melting in subduction zones
topic Archaean TTG
Subduction
Oceanic plateau
Carnegie ridge
Basalt partial melting
Crustal growth
[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry
[SDU.STU.VO]Sciences of the Universe [physics]/Earth Sciences/Volcanology
topic_facet Archaean TTG
Subduction
Oceanic plateau
Carnegie ridge
Basalt partial melting
Crustal growth
[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry
[SDU.STU.VO]Sciences of the Universe [physics]/Earth Sciences/Volcanology
url https://hal.science/hal-01134223
https://doi.org/10.1016/j.lithos.2014.02.017