Potential for Climate Induced Methane Hydrate Dissociation

Methane hydrates are frozen deposits of methane and water found in high pressure or low temperature sediments. When these deposits destabilize, large quantities of methane can be emitted into the atmosphere. This is significant to climate change because methane has 25 times more greenhouse gas poten...

Full description

Bibliographic Details
Main Author: MacWilliams, Graham
Format: Text
Language:unknown
Published: Scholarship @ Claremont 2018
Subjects:
Online Access:https://scholarship.claremont.edu/pomona_theses/179
https://scholarship.claremont.edu/cgi/viewcontent.cgi?article=1176&context=pomona_theses
id ftclaremontcoir:oai:scholarship.claremont.edu:pomona_theses-1176
record_format openpolar
spelling ftclaremontcoir:oai:scholarship.claremont.edu:pomona_theses-1176 2023-05-15T15:15:19+02:00 Potential for Climate Induced Methane Hydrate Dissociation MacWilliams, Graham 2018-01-01T08:00:00Z application/pdf https://scholarship.claremont.edu/pomona_theses/179 https://scholarship.claremont.edu/cgi/viewcontent.cgi?article=1176&context=pomona_theses unknown Scholarship @ Claremont https://scholarship.claremont.edu/pomona_theses/179 https://scholarship.claremont.edu/cgi/viewcontent.cgi?article=1176&context=pomona_theses © 2016 Graham Tate MacWilliams default Pomona Senior Theses Climate Change Methane hydrates methane hydrates permafrost global warming Biodiversity Other Ecology and Evolutionary Biology Population Biology text 2018 ftclaremontcoir 2022-06-06T07:39:28Z Methane hydrates are frozen deposits of methane and water found in high pressure or low temperature sediments. When these deposits destabilize, large quantities of methane can be emitted into the atmosphere. This is significant to climate change because methane has 25 times more greenhouse gas potential than Carbon Dioxide. Worldwide, it is estimated there are between 2500 and 10000 gigatons of methane stored in hydrate deposits. This represents more carbon than all fossil fuels on Earth. It is estimated that between 200 and 2000 gigatons of methane are stored in hydrates in Arctic waters acutely vulnerable to greenhouse warming. Over the last decade, researchers have identified instances of hydrate destabilization that have already begun. To gain insight into the potential climatic effects widespread hydrate dissociation would have, researchers have examined hydrate dissociation during the Paleocene Eocene Thermal Maximum 55 million years ago as a geologic precedent. In this period, large-scale hydrate dissociation contributed to 5-8 degree Celsius warming worldwide. If such a climatic shift were to transpire today, impacts on society would be enormous. There is currently a debate in the scientific community as to whether the risk of methane hydrate dissociation is relevant to the present generation. One side argues that not enough methane could be emitted into the atmosphere from today’s hydrate sources to have a meaningful impact on climate warming, where the other side contends that more than enough methane could be emitted from present day hydrate deposits to cause significant impacts to the global greenhouse effect. Given the information currently known about hydrates, it is reasonable to conclude there is a moderate risk of widespread destabilization that could impact global climate change in the coming decades. Significant acceleration of the conversion to alternative energies and implementation of geoengineering strategies should be considered. Text Arctic Climate change Global warming Methane hydrate permafrost Claremont Colleges: Scholarship@Claremont Arctic
institution Open Polar
collection Claremont Colleges: Scholarship@Claremont
op_collection_id ftclaremontcoir
language unknown
topic Climate Change
Methane
hydrates
methane hydrates
permafrost
global warming
Biodiversity
Other Ecology and Evolutionary Biology
Population Biology
spellingShingle Climate Change
Methane
hydrates
methane hydrates
permafrost
global warming
Biodiversity
Other Ecology and Evolutionary Biology
Population Biology
MacWilliams, Graham
Potential for Climate Induced Methane Hydrate Dissociation
topic_facet Climate Change
Methane
hydrates
methane hydrates
permafrost
global warming
Biodiversity
Other Ecology and Evolutionary Biology
Population Biology
description Methane hydrates are frozen deposits of methane and water found in high pressure or low temperature sediments. When these deposits destabilize, large quantities of methane can be emitted into the atmosphere. This is significant to climate change because methane has 25 times more greenhouse gas potential than Carbon Dioxide. Worldwide, it is estimated there are between 2500 and 10000 gigatons of methane stored in hydrate deposits. This represents more carbon than all fossil fuels on Earth. It is estimated that between 200 and 2000 gigatons of methane are stored in hydrates in Arctic waters acutely vulnerable to greenhouse warming. Over the last decade, researchers have identified instances of hydrate destabilization that have already begun. To gain insight into the potential climatic effects widespread hydrate dissociation would have, researchers have examined hydrate dissociation during the Paleocene Eocene Thermal Maximum 55 million years ago as a geologic precedent. In this period, large-scale hydrate dissociation contributed to 5-8 degree Celsius warming worldwide. If such a climatic shift were to transpire today, impacts on society would be enormous. There is currently a debate in the scientific community as to whether the risk of methane hydrate dissociation is relevant to the present generation. One side argues that not enough methane could be emitted into the atmosphere from today’s hydrate sources to have a meaningful impact on climate warming, where the other side contends that more than enough methane could be emitted from present day hydrate deposits to cause significant impacts to the global greenhouse effect. Given the information currently known about hydrates, it is reasonable to conclude there is a moderate risk of widespread destabilization that could impact global climate change in the coming decades. Significant acceleration of the conversion to alternative energies and implementation of geoengineering strategies should be considered.
format Text
author MacWilliams, Graham
author_facet MacWilliams, Graham
author_sort MacWilliams, Graham
title Potential for Climate Induced Methane Hydrate Dissociation
title_short Potential for Climate Induced Methane Hydrate Dissociation
title_full Potential for Climate Induced Methane Hydrate Dissociation
title_fullStr Potential for Climate Induced Methane Hydrate Dissociation
title_full_unstemmed Potential for Climate Induced Methane Hydrate Dissociation
title_sort potential for climate induced methane hydrate dissociation
publisher Scholarship @ Claremont
publishDate 2018
url https://scholarship.claremont.edu/pomona_theses/179
https://scholarship.claremont.edu/cgi/viewcontent.cgi?article=1176&context=pomona_theses
geographic Arctic
geographic_facet Arctic
genre Arctic
Climate change
Global warming
Methane hydrate
permafrost
genre_facet Arctic
Climate change
Global warming
Methane hydrate
permafrost
op_source Pomona Senior Theses
op_relation https://scholarship.claremont.edu/pomona_theses/179
https://scholarship.claremont.edu/cgi/viewcontent.cgi?article=1176&context=pomona_theses
op_rights © 2016 Graham Tate MacWilliams
default
_version_ 1766345682197676032