Aa 385, 328--336 (2002)

From the South Pole, microthermal turbulence within a narrow surface boundary layer some 200 m thick provides the dominant contribution to the astronomical seeing. We present results for the seeing at a wavelength of 2.4 m. The narrow turbulence layer above the site, confined close to the surface, p...

Full description

Bibliographic Details
Main Authors: Doi Eso Astronomy, R. D. Marks
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.7.1477
http://www.phys.unsw.edu.au/~mgb/Antbib/aa2084.pdf
Description
Summary:From the South Pole, microthermal turbulence within a narrow surface boundary layer some 200 m thick provides the dominant contribution to the astronomical seeing. We present results for the seeing at a wavelength of 2.4 m. The narrow turbulence layer above the site, confined close to the surface, provides greatly superior conditions for adaptive optics correction than do temperate latitude sites. An analysis of the available meteorological data for the Antarctic plateau suggests that sites on its summit, such as Domes A and C, probably experience significantly better boundary layer seeing than does the South Pole. In addition, the inversion layers may be significantly narrower, lending the sites even further to adaptive optics correction than does the Pole.