An Objective Satellite-Based Tropical Cyclone Size Climatology

Storm-centered infrared (IR) imagery of tropical cyclones (TCs) is related to the 850-hPa mean tangential wind at a radius of 500km (V500) calculated from 6-hourly global numerical analyses for North Atlantic and eastern North Pacific TCs for 1995–2011. V500 estimates are scaled using the climatolog...

Full description

Bibliographic Details
Main Authors: John A. Knaff, Scott P. Longmore, Debra A. Molenar
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 2013
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.688.2375
http://rammb.cira.colostate.edu/resources/docs/Knaff_etal_2014.pdf
id ftciteseerx:oai:CiteSeerX.psu:10.1.1.688.2375
record_format openpolar
spelling ftciteseerx:oai:CiteSeerX.psu:10.1.1.688.2375 2023-05-15T17:31:18+02:00 An Objective Satellite-Based Tropical Cyclone Size Climatology John A. Knaff Scott P. Longmore Debra A. Molenar The Pennsylvania State University CiteSeerX Archives 2013 application/pdf http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.688.2375 http://rammb.cira.colostate.edu/resources/docs/Knaff_etal_2014.pdf en eng http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.688.2375 http://rammb.cira.colostate.edu/resources/docs/Knaff_etal_2014.pdf Metadata may be used without restrictions as long as the oai identifier remains attached to it. http://rammb.cira.colostate.edu/resources/docs/Knaff_etal_2014.pdf text 2013 ftciteseerx 2016-01-08T18:13:40Z Storm-centered infrared (IR) imagery of tropical cyclones (TCs) is related to the 850-hPa mean tangential wind at a radius of 500km (V500) calculated from 6-hourly global numerical analyses for North Atlantic and eastern North Pacific TCs for 1995–2011. V500 estimates are scaled using the climatological vortex decay rate beyond 500km to estimate the radius of 5 kt (1 kt 5 0.514m s21) winds (R5) or TC size. A much larger his-torical record of TC-centered IR imagery (1978–2011) is then used to estimate TC sizes and form a global TC size climatology. The basin-specific distributions of TC size reveal that, among other things, the eastern North Pacific TC basins have the smallest while western North Pacific have the largest TC size distributions. The life cycle of TC sizes with respect to maximum intensity shows that TC growth characteristics are different among the individual TC basins, with the North Atlantic composites showing continued growth after maximum in-tensity. Small TCs are generally located at lower latitudes, westward steering, and preferred in seasons when environmental low-level vorticity is suppressed. Large TCs are generally located at higher latitudes, poleward steering, and preferred in enhanced low-level vorticity environments. Postmaximum intensity growth of TCs occurs in regions associated with enhanced baroclinicity and TC recurvature, while those that do not grow much are associated with west movement, erratic storm tracks, and landfall at or near the time of maximum intensity. With respect to climate change, no significant long-term trends are found in the dataset of TC size. 1. Text North Atlantic Unknown Pacific
institution Open Polar
collection Unknown
op_collection_id ftciteseerx
language English
description Storm-centered infrared (IR) imagery of tropical cyclones (TCs) is related to the 850-hPa mean tangential wind at a radius of 500km (V500) calculated from 6-hourly global numerical analyses for North Atlantic and eastern North Pacific TCs for 1995–2011. V500 estimates are scaled using the climatological vortex decay rate beyond 500km to estimate the radius of 5 kt (1 kt 5 0.514m s21) winds (R5) or TC size. A much larger his-torical record of TC-centered IR imagery (1978–2011) is then used to estimate TC sizes and form a global TC size climatology. The basin-specific distributions of TC size reveal that, among other things, the eastern North Pacific TC basins have the smallest while western North Pacific have the largest TC size distributions. The life cycle of TC sizes with respect to maximum intensity shows that TC growth characteristics are different among the individual TC basins, with the North Atlantic composites showing continued growth after maximum in-tensity. Small TCs are generally located at lower latitudes, westward steering, and preferred in seasons when environmental low-level vorticity is suppressed. Large TCs are generally located at higher latitudes, poleward steering, and preferred in enhanced low-level vorticity environments. Postmaximum intensity growth of TCs occurs in regions associated with enhanced baroclinicity and TC recurvature, while those that do not grow much are associated with west movement, erratic storm tracks, and landfall at or near the time of maximum intensity. With respect to climate change, no significant long-term trends are found in the dataset of TC size. 1.
author2 The Pennsylvania State University CiteSeerX Archives
format Text
author John A. Knaff
Scott P. Longmore
Debra A. Molenar
spellingShingle John A. Knaff
Scott P. Longmore
Debra A. Molenar
An Objective Satellite-Based Tropical Cyclone Size Climatology
author_facet John A. Knaff
Scott P. Longmore
Debra A. Molenar
author_sort John A. Knaff
title An Objective Satellite-Based Tropical Cyclone Size Climatology
title_short An Objective Satellite-Based Tropical Cyclone Size Climatology
title_full An Objective Satellite-Based Tropical Cyclone Size Climatology
title_fullStr An Objective Satellite-Based Tropical Cyclone Size Climatology
title_full_unstemmed An Objective Satellite-Based Tropical Cyclone Size Climatology
title_sort objective satellite-based tropical cyclone size climatology
publishDate 2013
url http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.688.2375
http://rammb.cira.colostate.edu/resources/docs/Knaff_etal_2014.pdf
geographic Pacific
geographic_facet Pacific
genre North Atlantic
genre_facet North Atlantic
op_source http://rammb.cira.colostate.edu/resources/docs/Knaff_etal_2014.pdf
op_relation http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.688.2375
http://rammb.cira.colostate.edu/resources/docs/Knaff_etal_2014.pdf
op_rights Metadata may be used without restrictions as long as the oai identifier remains attached to it.
_version_ 1766128801276755968