Springtime Arctic haze contributions of submicron organic particles Environmental

[1] The composition of Arctic aerosol, especially during the springtime Arctic haze, may play an important role in the radiative balance of the Arctic. The contribution of organic components to Arctic haze has only recently been investigated. Because measurements in this region are sparse, little is...

Full description

Bibliographic Details
Main Authors: A A. Frossard, Patrick M. Shaw, Lynn M. Russell, Jesse H. Kroll, Manjula R. Canagaratna, Douglas R. Worsnop, Patricia K. Quinn, Timothy S. Bates
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.663.9622
http://aerosols.ucsd.edu/papers/Frossard2011.pdf
Description
Summary:[1] The composition of Arctic aerosol, especially during the springtime Arctic haze, may play an important role in the radiative balance of the Arctic. The contribution of organic components to Arctic haze has only recently been investigated. Because measurements in this region are sparse, little is known about organic particle composition, sources, and concentrations. This study compares springtime measurements in the Arctic regions north of the Atlantic (ICEALOT, 2008) and Pacific (Barrow, Alaska, 2008 and 2009) oceans. The aerosol organic functional group composition from Fourier transform infrared (FTIR) spectroscopy combined with positive matrix factorization (PMF) and elemental tracer analysis indicate that mixed combustion sources account for more than 60 % (>0.3 mg m−3) of the submicron organic mass (OM1) for springtime haze conditions in both regions. Correlations with typical combustion tracers (S, Zn, K, Br, V) provide evidence for the contribution of combustion sources to the Arctic OM1. However, the two regions are influenced by different urban and industrial centers with different fuel usage. High‐sulfur coal burning in northeastern Europe impacts the northern Atlantic Arctic region, while oil burning and forest fires in northeastern Asia and Alaska