Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data
High-latitude ecosystems store approximately 1700 Pg of soil carbon (C), which is twice as much C as is currently contained in the atmosphere. Permafrost thaw and subsequent microbial decomposition of permafrost organic matter could add large amounts of C to the atmosphere, thereby influencing the g...
Main Author: | |
---|---|
Other Authors: | |
Format: | Text |
Language: | English |
Subjects: | |
Online Access: | http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.637.5270 http://www.lter.uaf.edu/pdf/1811_Schadel_Schuur_2014.pdf |
Summary: | High-latitude ecosystems store approximately 1700 Pg of soil carbon (C), which is twice as much C as is currently contained in the atmosphere. Permafrost thaw and subsequent microbial decomposition of permafrost organic matter could add large amounts of C to the atmosphere, thereby influencing the global C cycle. The rates at which C is being released from the permafrost zone at different soil depths and across different physiographic regions are poorly understood but crucial in understanding future changes in permafrost C storage with climate change. We assessed the inherent decomposability of C from the permafrost zone by assembling a database of long-term (>1 year) aerobic soil incubations from 121 individual samples from 23 high-latitude ecosystems located across the northern circumpo-lar permafrost zone. Using a three-pool (i.e., fast, slow and passive) decomposition model, we estimated pool sizes for C fractions with different turnover times and their inherent decomposition rates using a reference temperature of 5 °C. Fast cycling C accounted for less than 5 % of all C in both organic and mineral soils whereas the pool size of slow cycling C increased with C: N. Turnover time at 5 °C of fast cycling C typically was below 1 year, between 5 and 15 years for slow turning over C, and more than 500 years for passive C. We project that between 20 and 90 % of the |
---|