Late Pleistocene to Holocene activity at Bakening volcano and surrounding monogenetic centers (Kamchatka): volcanic geology and geochemical evolution

The different roles of variable mantle sources and intra-crustal differentiation processes at Bakening volcano (Kamchatka) and contemporaneous basaltic monogenetic centers are studied using major and trace elements and isotopic data. Three suites of volcanic activity are recognized: (1) plateau basa...

Full description

Bibliographic Details
Main Authors: F. Dorendorfa, T. Churikovab, A. Koloskovb
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 1999
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.605.5242
http://www.kscnet.ru/ivs/bibl/sotrudn/churikova/bakening_dorend.pdf
Description
Summary:The different roles of variable mantle sources and intra-crustal differentiation processes at Bakening volcano (Kamchatka) and contemporaneous basaltic monogenetic centers are studied using major and trace elements and isotopic data. Three suites of volcanic activity are recognized: (1) plateau basalts of Lower Pleistocene age; (2) andesites and dacites of the Bakening volcano, the New Bakening volcano dacitic centers nearby; and (3) contemporaneous basaltic cinder cones erupted along subduction zone—parallel N–S faults. Age-data show that the last eruptions in the Bakening area occurred only 600– 1200 years ago, suggesting the volcano is potentially active. Major element variations and petrographic observations provides evidence for a fractionation assemblage of olivine, clinopyroxene, ^plagioclase, ^magnetite (?) within the basaltic suite. The fractionation in the andesites and dacites is dominated by amphibole, clinopyroxene, orthopyroxene and plagioclase plus minor amounts of magnetite and apatite. The youngest cpx-opx-andesites of Bakening main volcano deviate from that trend. Their source was probably formed by mixing of basaltic magmas into the silicic magma chamber of the Bakening volcano. Overall trace element patterns as well as the Sr–Nd– Pb isotopic compositions are quite similar in all rocks despite large differences in their chemical composition (from basalt to rhyodacite). In detail however, the andesite–dacites of the central Bakening volcano show a stronger enrichment in the more incompatible elements and depletion in HREE compared to the monogenetic basaltic centers. This results in a crossing of the