Antarctic climate change during the last 50 years

The Reference Antarctic Data for Environmental Research (READER) project data set of monthly mean Antarctic near-surface temperature, mean sea-level pressure (MSLP) and wind speed has been used to investigate trends in these quantities over the last 50 years for 19 stations with long records. Eleven...

Full description

Bibliographic Details
Main Authors: John Turner, Steve R. Colwell, A Gareth J. Marshall, A Tom A. Lachlan-cope, Andrew M. Carleton, B Phil D. Jones, C Victor Lagun, D Phil A. Reide, Svetlana Iagovkinaf
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 2005
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.591.9578
http://www.scar.org/researchgroups/physicalscience/reader_turneretal.pdf
Description
Summary:The Reference Antarctic Data for Environmental Research (READER) project data set of monthly mean Antarctic near-surface temperature, mean sea-level pressure (MSLP) and wind speed has been used to investigate trends in these quantities over the last 50 years for 19 stations with long records. Eleven of these had warming trends and seven had cooling trends in their annual data (one station had too little data to allow an annual trend to be computed), indicating the spatial complexity of change that has occurred across the Antarctic in recent decades. The Antarctic Peninsula has experienced a major warming over the last 50 years, with temperatures at Faraday/Vernadsky station having increased at a rate of 0.56 °C decade−1 over the year and 1.09 °C decade−1 during the winter; both figures are statistically significant at less than the 5 % level. Overlapping 30 year trends of annual mean temperatures indicate that, at all but two of the 10 coastal stations for which trends could be computed back to 1961, the warming trend was greater (or the cooling trend less) during the 1961–90 period compared with 1971–2000. All the continental stations for which MSLP data were available show negative trends in the annual mean pressures over the full length of their records, which we attribute to the trend in recent decades towards the Southern Hemisphere annular mode (SAM) being in its high-index state. Except for Halley