Published online in Wiley InterScience (www.interscience.wiley.com). DOI:10.1002/joc.965 REVIEW THE EL NI ˜NO–SOUTHERN OSCILLATION AND ANTARCTICA

This paper reviews our understanding of how the effects of the El Niño–southern oscillation (ENSO) might be transmitted from the tropical Pacific Ocean to the Antarctic, and examines the evidence for such signals in the Antarctic meteorological, sea ice, ice core and biological records. Many scient...

Full description

Bibliographic Details
Main Author: John Turner
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 2002
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.591.5116
http://www.scar.org/information/elnino/El_Nino.pdf
Description
Summary:This paper reviews our understanding of how the effects of the El Niño–southern oscillation (ENSO) might be transmitted from the tropical Pacific Ocean to the Antarctic, and examines the evidence for such signals in the Antarctic meteorological, sea ice, ice core and biological records. Many scientific disciples concerned with the Antarctic require an understanding of how the climatic conditions in the tropical and mid-latitude regions affect the Antarctic, and it is hoped that this review will aid their work. The most pronounced signals of ENSO are found over the southeast Pacific as a result of a climatological Rossby wave train that gives positive (negative) height anomalies over the Amundsen–Bellingshausen Sea during El Niño (La Niña) events. However, the extra-tropical signature can sometimes show a high degree of variability between events in this area. In West Antarctica, links between ENSO and precipitation have shown variability on the decadal time scale. Across the continent itself, it is even more difficult to relate meteorological conditions to ENSO, yet analyses of the long meteorological records from the stations do indicate a distinct switch in sign of the pressure anomalies from positive to negative across the minimum in the southern oscillation index. The oceanic signals of ENSO around the Antarctic are less clear, but it has been suggested that the Antarctic circumpolar wave could be forced by the phenomenon.