DOI:10.1017/S0016756804008908 Printed in the United Kingdom Evolution of the Timan–Pechora and South Barents Sea basins

Abstract – We have analysed 129 stratigraphic sections from the Timan–Pechora basin, from its adjacent continental shelf and from the South Barents Sea basin, in order to determine whether existing models of extensional sedimentary basin formation can be applied to these intracratonic basins or whet...

Full description

Bibliographic Details
Main Authors: N. White, S. Tull, V. Bashilov, V. Kuprin, L. Natapov, D. Macdonald
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 2003
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.571.2587
http://bullard.esc.cam.ac.uk/~basin/pubs/OLeary-et-al-04.pdf
Description
Summary:Abstract – We have analysed 129 stratigraphic sections from the Timan–Pechora basin, from its adjacent continental shelf and from the South Barents Sea basin, in order to determine whether existing models of extensional sedimentary basin formation can be applied to these intracratonic basins or whether new mechanisms of formation need to be invoked. The subsidence history of each section has been calculated using standard backstripping techniques. An inverse model, based on finite-duration lithospheric stretching, has then been used to calculate the distribution of strain rate as a function of time required to fit each subsidence profile. Results demonstrate an excellent fit between theory and observation. By combining our analysis with independent field-based and geophysical observations, we show that the Timan–Pechora basin underwent at least four phases of mild lithospheric stretching during the Phanerozoic (β < 1.2). These phases occurred in Ordovician, Late Ordovician– Silurian, Middle–Late Devonian and Permian–Early Triassic times. Growth on normal faults, episodes of volcanic activity and regional considerations provide corroborative support for the existence of all four phases. Although less well constrained, subsidence data from the South Barents Sea basin are consistent with a similar Early–Middle Palaeozoic history. The main difference is that Permian–Early Triassic extension is substantially greater than that seen onshore. This similarity implies structural