Sequence Variation and Gene Duplication at MHC DQB Loci of Baiji (Lipotes vexillifer), a Chinese River
The major histocompatibility complex (MHC) is a fundamental part of the vertebrate immune system, and the high variability in many MHC genes is thought to play an important role in the recognition of parasites. Baiji (Lipotes vexillifer) is one of the most endangered species in the world. Its wild p...
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Text |
Language: | English |
Subjects: | |
Online Access: | http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.537.5990 http://jhered.oxfordjournals.org/content/96/4/310.full.pdf |
Summary: | The major histocompatibility complex (MHC) is a fundamental part of the vertebrate immune system, and the high variability in many MHC genes is thought to play an important role in the recognition of parasites. Baiji (Lipotes vexillifer) is one of the most endangered species in the world. Its wild population has declined to fewer than 100 individuals and has a very high risk of becoming extinct in the near future. In this study we present a first step in the molecular characterization of a DQB-like locus of baiji by nucleotide sequence analysis of the polymorphic exon 2 segments. In the examined 172 bp sequences from a group of 18 incidentally captured or stranded individuals, 48 variable sites were determined and 43 alleles were identified, many of which were represented by only one clone. Three to seven alleles were found in each individual, suggesting gene duplications. No deletion, insertion, or exceptional stop codon was detected, suggesting these alleles function in vivo. Phylogenetic reconstruction using neighbor joining grouped the 43 alleles into two distinct lineages, differing by seven nucleotides and four amino acids. Substitutions of amino acids tend to be clustered around sites postulated to be responsible for selective peptide recognition. In the peptide-binding region (PBR) of theDQB locus, the average number of nonsynonymous substitutions per site is greater than that of synonymous substitutions per site (0.1962 versus 0.0256, respectively). Nucleotide and amino acid sequences both showed a relatively high level of similarity (nucleotides 90.6%; amino acids 80.6%) to those of beluga whale (Delphinapterus leucas) and narwhal (Monodon monoceros). The high level of baiji MHC |
---|