q 2004 American Meteorological Society The Bering Slope Current System Revisited*

Mean circulation and water properties within the Aleutian Basin of the Bering Sea are investigated using hydrographic and subsurface park pressure displacement data from a regional array of 14 profiling CTD floats. After 10 days drifting at 1000 dbar, each float measures temperature and salinity pro...

Full description

Bibliographic Details
Main Authors: Gregory C. Johnson, Phyllis, J. Stabeno, Stephen C. Riser
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 2003
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.527.3415
http://www.pmel.noaa.gov/people/gjohnson/gcj_2q.pdf
id ftciteseerx:oai:CiteSeerX.psu:10.1.1.527.3415
record_format openpolar
spelling ftciteseerx:oai:CiteSeerX.psu:10.1.1.527.3415 2023-05-15T15:43:54+02:00 q 2004 American Meteorological Society The Bering Slope Current System Revisited* Gregory C. Johnson Phyllis J. Stabeno Stephen C. Riser The Pennsylvania State University CiteSeerX Archives 2003 application/pdf http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.527.3415 http://www.pmel.noaa.gov/people/gjohnson/gcj_2q.pdf en eng http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.527.3415 http://www.pmel.noaa.gov/people/gjohnson/gcj_2q.pdf Metadata may be used without restrictions as long as the oai identifier remains attached to it. http://www.pmel.noaa.gov/people/gjohnson/gcj_2q.pdf text 2003 ftciteseerx 2016-01-08T10:24:56Z Mean circulation and water properties within the Aleutian Basin of the Bering Sea are investigated using hydrographic and subsurface park pressure displacement data from a regional array of 14 profiling CTD floats. After 10 days drifting at 1000 dbar, each float measures temperature and salinity profiles as it rises to the surface and then transmits these data via satellites, which also make several fixes of the float surface positions before it sinks again. Every fourth cycle, the floats sink from 1000 dbar to a 2000-dbar target just prior to ascent to measure deeper profiles. The 1000-dbar displacements estimated from the float surface position fixes reveal a coherent few-centimeters-per-second northwestward flow along the northeastern boundary, the deep signature of the Bering Slope Current. Middepth water property distributions are consistent with cyclonic advection of warm water from the south around the basin, eastward in the Aleutian North Slope Current, and then north-westward in the Bering Slope Current. Geostrophic transport estimates relative to 1000 dbar also show cyclonic motion, although with significant noise, likely owing to the influence of mesoscale eddies. The mean along-slope geostrophic transport of the Bering Slope Current is determined between 0 and 1900 dbar relative to 1000 dbar and then combined with mean along-slope velocities at 1000 dbar. The result is an absolute geostrophic transport estimate with 95 % confidence intervals for the along-slope current offshore of the 1000-m isobath and between 0 and 1900 dbar of 5.8 (61.7) 3 106 m3 s21. 1. Text Bering Sea Unknown Bering Sea
institution Open Polar
collection Unknown
op_collection_id ftciteseerx
language English
description Mean circulation and water properties within the Aleutian Basin of the Bering Sea are investigated using hydrographic and subsurface park pressure displacement data from a regional array of 14 profiling CTD floats. After 10 days drifting at 1000 dbar, each float measures temperature and salinity profiles as it rises to the surface and then transmits these data via satellites, which also make several fixes of the float surface positions before it sinks again. Every fourth cycle, the floats sink from 1000 dbar to a 2000-dbar target just prior to ascent to measure deeper profiles. The 1000-dbar displacements estimated from the float surface position fixes reveal a coherent few-centimeters-per-second northwestward flow along the northeastern boundary, the deep signature of the Bering Slope Current. Middepth water property distributions are consistent with cyclonic advection of warm water from the south around the basin, eastward in the Aleutian North Slope Current, and then north-westward in the Bering Slope Current. Geostrophic transport estimates relative to 1000 dbar also show cyclonic motion, although with significant noise, likely owing to the influence of mesoscale eddies. The mean along-slope geostrophic transport of the Bering Slope Current is determined between 0 and 1900 dbar relative to 1000 dbar and then combined with mean along-slope velocities at 1000 dbar. The result is an absolute geostrophic transport estimate with 95 % confidence intervals for the along-slope current offshore of the 1000-m isobath and between 0 and 1900 dbar of 5.8 (61.7) 3 106 m3 s21. 1.
author2 The Pennsylvania State University CiteSeerX Archives
format Text
author Gregory C. Johnson
Phyllis
J. Stabeno
Stephen C. Riser
spellingShingle Gregory C. Johnson
Phyllis
J. Stabeno
Stephen C. Riser
q 2004 American Meteorological Society The Bering Slope Current System Revisited*
author_facet Gregory C. Johnson
Phyllis
J. Stabeno
Stephen C. Riser
author_sort Gregory C. Johnson
title q 2004 American Meteorological Society The Bering Slope Current System Revisited*
title_short q 2004 American Meteorological Society The Bering Slope Current System Revisited*
title_full q 2004 American Meteorological Society The Bering Slope Current System Revisited*
title_fullStr q 2004 American Meteorological Society The Bering Slope Current System Revisited*
title_full_unstemmed q 2004 American Meteorological Society The Bering Slope Current System Revisited*
title_sort q 2004 american meteorological society the bering slope current system revisited*
publishDate 2003
url http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.527.3415
http://www.pmel.noaa.gov/people/gjohnson/gcj_2q.pdf
geographic Bering Sea
geographic_facet Bering Sea
genre Bering Sea
genre_facet Bering Sea
op_source http://www.pmel.noaa.gov/people/gjohnson/gcj_2q.pdf
op_relation http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.527.3415
http://www.pmel.noaa.gov/people/gjohnson/gcj_2q.pdf
op_rights Metadata may be used without restrictions as long as the oai identifier remains attached to it.
_version_ 1766378106240630784