Spatial and Temporal Variability of Nonfreezing Drizzle in the United States and Canada

A climatology of nonfreezing drizzle is created using surface observations from 584 stations across the United States and Canada over the 15-yr period 1976–90. Drizzle falls 50–200 h a year in most locations in the eastern United States and Canada, whereas drizzle falls less than 50 h a year in the...

Full description

Bibliographic Details
Main Authors: Addison L. Sears-collins, David M. Schultz, Robert H. Johns
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 2005
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.502.9297
http://www.cimms.ou.edu/~schultz/pubs/sears-collinsetal06.pdf
Description
Summary:A climatology of nonfreezing drizzle is created using surface observations from 584 stations across the United States and Canada over the 15-yr period 1976–90. Drizzle falls 50–200 h a year in most locations in the eastern United States and Canada, whereas drizzle falls less than 50 h a year in the west, except for coastal Alaska and several western basins. The eastern and western halves of North America are separated by a strong gradient in drizzle frequency along roughly 100°W, as large as about an hour a year over 2 km. Forty percent of the stations have a drizzle maximum from November to January, whereas only 13 % of stations have a drizzle maximum from June to August. Drizzle occurrence exhibits a seasonal migration from eastern Canada and the central portion of the Northwest Territories in summer, equatorward to most of the eastern United States and southeast Canada in early winter, to southeastern Texas and the eastern United States in late winter, and back north to eastern Canada in the spring. The diurnal hourly frequency of drizzle across the United States and Canada increases sharply from 0900 to 1200 UTC, followed by a steady decline from 1300 to 2300 UTC. Diurnal drizzle frequency is at a maximum in the early morning, in agreement with other studies. Drizzle occurs during a wide range of atmospheric conditions at the surface. Drizzle has occurred at sea