Natural Abundance Carbon 13 Nuclear Magnetic Resonance Spectroscopy STRATEGIES FOR ASSIGNMENTS*

Natural abundance 13C Fourier transform NMR spectra (at 15.18 MHz, in 20-mm sample tubes) of aqueous native proteins yield numerous narrow single carbon resonances of nonprotonated aromatic carbons. Techniques for the assignment of these resonances are presented. Each technique is applied to one or...

Full description

Bibliographic Details
Main Authors: Eric Oldfield, Raymond S. Norton, Adam Allerhand
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.497.5027
Description
Summary:Natural abundance 13C Fourier transform NMR spectra (at 15.18 MHz, in 20-mm sample tubes) of aqueous native proteins yield numerous narrow single carbon resonances of nonprotonated aromatic carbons. Techniques for the assignment of these resonances are presented. Each technique is applied to one or more of the following proteins: ferricytochrome c from horse heart and Candida krusei, ferrocytochrome c and cyanoferricytochrome c from horse heart, lysozyme from hen egg white, cyanoferrimyoglobins from horse and sperm whale skeletal muscle, and carbon monoxide myoglobin from horse. In all of the protein spectra we have examined, methine aromatic carbons give rise to broad bands. Studies of the narrow resonances of nonprotonated aromatic carbons of proteins are facilitated by removal of these broad bands by means of the convolution-difference method, preferably from spectra recorded under conditions of noise-modulated off-resonance proton decoupling. We present a summary of the chemical shift ranges for the various types of nonprotonated aromatic carbons of amino acid resiuues and hemes of diamagnetic proteins, based on our results for hen egg white lysozyme, horse heart ferrocytochrome c, horse carbon monoxide myoglobin, and carbon monoxide hemoglobins from various species. Heme carbon resonances disappear from their positions in the spectra of ferrocytochrome c and carbon monoxide myoglobin upon conversion of these proteins to paramagnetic