Mesoscale disturbance and ecological response to decadal climatic variability in the American southwest

Ecological responses to climatic variability in the Southwest include regionally synchronized fires, insect outbreaks, and pulses in tree demography (births and deaths). Multicentury, tree-ring reconstructions of drought, disturbance history, and tree demography reveal climatic effects across scales...

Full description

Bibliographic Details
Main Authors: Thomas W. Swetnam, Julio L. Betancourt
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Published: 1998
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.483.9198
http://www.ltrr.arizona.edu/~tswetnam/tws-pdf/JClimate98.pdf
Description
Summary:Ecological responses to climatic variability in the Southwest include regionally synchronized fires, insect outbreaks, and pulses in tree demography (births and deaths). Multicentury, tree-ring reconstructions of drought, disturbance history, and tree demography reveal climatic effects across scales, from annual to decadal, and from local (,102 km2) to mesoscale (104–106 km2). Climate–disturbance relations are more variable and complex than previously assumed. During the past three centuries, mesoscale outbreaks of the western spruce budworm (Choristoneura occidentalis) were associated with wet, not dry episodes, contrary to conventional wisdom. Regional fires occur during extreme droughts but, in some ecosystems, antecedent wet conditions play a secondary role by regulating accumulation of fuels. Interdecadal changes in fire–climate associations parallel other evidence for shifts in the frequency or amplitude of the Southern Oscillation (SO) during the past three centuries. High interannual, fire–climate correlations (r 5 0.7 to 0.9) during specific decades (i.e., circa 1740–80 and 1830– 60) reflect periods of high amplitude in the SO and rapid switching from extreme wet to dry years in the Southwest, thereby entraining fire occurrence across the region. Weak correlations from 1780 to 1830 correspond with a decrease in SO frequency or amplitude inferred from independent tree-ring width, ice core, and coral isotope reconstructions.