sin er wa re

doi:10.1098/rsta.2006.1794 Published online 26 May 2006consistent with increased melting of continental ice. Newly forming bottom water has become colder and less salty downstream from that region, but generally warmer in the Weddell Sea. Many ice shelves have retreated or thinned, but others have g...

Full description

Bibliographic Details
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.466.2106
http://www.ldeo.columbia.edu/~irina/lamont/paper1_stan/Jacobs2006_SouthOcChange.pdf
Description
Summary:doi:10.1098/rsta.2006.1794 Published online 26 May 2006consistent with increased melting of continental ice. Newly forming bottom water has become colder and less salty downstream from that region, but generally warmer in the Weddell Sea. Many ice shelves have retreated or thinned, but others have grown and no trend is apparent in the large iceberg calving rate. Warming and isotherm shoaling within the polar gyres may result in part from changes in the Southern Annular Mode, which could facilitate deep-water access to the continental shelves. Sea-level rise over the past half century has a strong eustatic component and has recently accelerated. Observations over longer periods and with better spatial coverage are needed to better understand the processes causing these changes and their links to the Antarctic ice sheet.