Flow dynamics of a wide Arctic canyon
Abstract. We extend and interpret acoustic Doppler current profiler and conductivity-temperature-depth data collected in the summer of 1993 over Barrow Canyon in order to implement a high resolution (1.5 to 5 km) model of the Beaufort and Chukchi Seas. This paper addresses physical processes relevan...
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Text |
Language: | English |
Subjects: | |
Online Access: | http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.465.3207 http://muenchow.ceoe.udel.edu/papers/Signorini1997JGR.pdf |
id |
ftciteseerx:oai:CiteSeerX.psu:10.1.1.465.3207 |
---|---|
record_format |
openpolar |
spelling |
ftciteseerx:oai:CiteSeerX.psu:10.1.1.465.3207 2023-05-15T15:00:49+02:00 Flow dynamics of a wide Arctic canyon S. R. Signorini A. Manchow D. Haidvogel The Pennsylvania State University CiteSeerX Archives application/pdf http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.465.3207 http://muenchow.ceoe.udel.edu/papers/Signorini1997JGR.pdf en eng http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.465.3207 http://muenchow.ceoe.udel.edu/papers/Signorini1997JGR.pdf Metadata may be used without restrictions as long as the oai identifier remains attached to it. http://muenchow.ceoe.udel.edu/papers/Signorini1997JGR.pdf text ftciteseerx 2016-01-08T06:52:20Z Abstract. We extend and interpret acoustic Doppler current profiler and conductivity-temperature-depth data collected in the summer of 1993 over Barrow Canyon in order to implement a high resolution (1.5 to 5 km) model of the Beaufort and Chukchi Seas. This paper addresses physical processes relevant to the Barrow Canyon region using common dynamical analyses of both field data and numerical results. The field data reveal the dominant physical processes that guide the design of our numerical experiments. The observed velocity field shows an intense and variable down canyon flow with transports ranging from 0.5 to 1.4 Sv. A momentum analysis reveals that the cross-canyon dynamic balance for the barotropic compo-nent is primarily geostrophic. Conversely, the baroclinic cross-canyon momentum balance is ageostrophic and secondary flow results from a local imbalance between the vertically varying Coriolis acceleration and the cross-canyon pressure gradient. In addition to the moderate influence of stratification (Froude number of 0.4 and Burger number of 0.06), the barotropic pressure gradient component across the canyon (inferred from the large magnitude and little vertical variability of the residuals) is dynamically important for both upcanyon and downcanyon flows that occur at different locations concurrently. The along-canyon dynamic balance is ageostrophic since the time derivative and the Coriolis term are of the same order of magnitude (temporal Rossby number is approximately 1). An analysis of the longitudinal density and velocity fields from the model reveals that the main driving mechanism for generating the observed upcanyon flow is the nonlinear interaction of the variable barotropic flow with the steep topography. Stratification is maintained by the downcanyon advection of fresh and warm water from the Bering and Chukchi Seas and the upcanyon advection of saltier and colder water from the Arctic. 1. Text Arctic Chukchi Unknown Arctic Barrow Canyon ENVELOPE(-154.000,-154.000,72.500,72.500) |
institution |
Open Polar |
collection |
Unknown |
op_collection_id |
ftciteseerx |
language |
English |
description |
Abstract. We extend and interpret acoustic Doppler current profiler and conductivity-temperature-depth data collected in the summer of 1993 over Barrow Canyon in order to implement a high resolution (1.5 to 5 km) model of the Beaufort and Chukchi Seas. This paper addresses physical processes relevant to the Barrow Canyon region using common dynamical analyses of both field data and numerical results. The field data reveal the dominant physical processes that guide the design of our numerical experiments. The observed velocity field shows an intense and variable down canyon flow with transports ranging from 0.5 to 1.4 Sv. A momentum analysis reveals that the cross-canyon dynamic balance for the barotropic compo-nent is primarily geostrophic. Conversely, the baroclinic cross-canyon momentum balance is ageostrophic and secondary flow results from a local imbalance between the vertically varying Coriolis acceleration and the cross-canyon pressure gradient. In addition to the moderate influence of stratification (Froude number of 0.4 and Burger number of 0.06), the barotropic pressure gradient component across the canyon (inferred from the large magnitude and little vertical variability of the residuals) is dynamically important for both upcanyon and downcanyon flows that occur at different locations concurrently. The along-canyon dynamic balance is ageostrophic since the time derivative and the Coriolis term are of the same order of magnitude (temporal Rossby number is approximately 1). An analysis of the longitudinal density and velocity fields from the model reveals that the main driving mechanism for generating the observed upcanyon flow is the nonlinear interaction of the variable barotropic flow with the steep topography. Stratification is maintained by the downcanyon advection of fresh and warm water from the Bering and Chukchi Seas and the upcanyon advection of saltier and colder water from the Arctic. 1. |
author2 |
The Pennsylvania State University CiteSeerX Archives |
format |
Text |
author |
S. R. Signorini A. Manchow D. Haidvogel |
spellingShingle |
S. R. Signorini A. Manchow D. Haidvogel Flow dynamics of a wide Arctic canyon |
author_facet |
S. R. Signorini A. Manchow D. Haidvogel |
author_sort |
S. R. Signorini |
title |
Flow dynamics of a wide Arctic canyon |
title_short |
Flow dynamics of a wide Arctic canyon |
title_full |
Flow dynamics of a wide Arctic canyon |
title_fullStr |
Flow dynamics of a wide Arctic canyon |
title_full_unstemmed |
Flow dynamics of a wide Arctic canyon |
title_sort |
flow dynamics of a wide arctic canyon |
url |
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.465.3207 http://muenchow.ceoe.udel.edu/papers/Signorini1997JGR.pdf |
long_lat |
ENVELOPE(-154.000,-154.000,72.500,72.500) |
geographic |
Arctic Barrow Canyon |
geographic_facet |
Arctic Barrow Canyon |
genre |
Arctic Chukchi |
genre_facet |
Arctic Chukchi |
op_source |
http://muenchow.ceoe.udel.edu/papers/Signorini1997JGR.pdf |
op_relation |
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.465.3207 http://muenchow.ceoe.udel.edu/papers/Signorini1997JGR.pdf |
op_rights |
Metadata may be used without restrictions as long as the oai identifier remains attached to it. |
_version_ |
1766332881990320128 |