Variability of large-scale atmospheric circulation indices for the northern hemisphere during the past 100 years

We present an analysis of the large-scale atmospheric circulation variability since 1900 based on various circulation indices. They represent the main features of the zonal mean circulation in the northern hemisphere in boreal winter (such as the Hadley circulation, the subtropical jet, and the pola...

Full description

Bibliographic Details
Main Authors: Alexander Stickler, Thomas Griesser, Andreas M, Andrea Grant, Tracy Ewen, Tianjun Zhou, Martin Schraner, Eugene Rozanov, Thomas Peter
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.459.9084
http://www.lasg.ac.cn/UpLoadFiles/File/papers/2009/2009_broennimann_wm.pdf
Description
Summary:We present an analysis of the large-scale atmospheric circulation variability since 1900 based on various circulation indices. They represent the main features of the zonal mean circulation in the northern hemisphere in boreal winter (such as the Hadley circulation, the subtropical jet, and the polar vortex in the lower stratosphere) as well as aspects of the regional and large-scale circulation (the Pacific Walker Circulation, the Indian monsoon, the North Atlantic Oscillation, NAO, and the Pacific North American pattern, PNA). For the past decades we calculate the indices from different reanalyses (NCEP/NCAR, ERA-40, JRA-25, ERA-Interim). For the first half of the 20th century the indices are statistically reconstructed based on historical upper-air and surface data as well as calculated from the Twentieth Century Reanalysis. The indices from all these observation-based data sets are compared to indices calculated from a 9-member ensemble of “all forcings ” simulations performed with the chemistry-climate model SOCOL. After discussing the agreement among different data products, we analyse the interannual-to-decadal variability of the indices in the context of possible driving factors, such as El Niño/Southern Oscillation (ENSO), volcanic eruptions, and solar activity. The interannual variability of the Hadley cell strength, the subtropical jet strength, or the PNA is well reproduced by the model ensemble mean, i.e., it is predictable in the context of the specified forcings. The