Thin ice impacts on surface salt flux and ice strength: Inferences from advanced very high resolution radiometer

Abstract. Temperatures and albedos derived from satellite imagery are combined with a thermodynamic ice model to estimate thin ice thickness distributions over the Beaufort and the northern Greenland seas. The study shows that thin ice (thinner than 1 m) occupied over half the area in the seasonal i...

Full description

Bibliographic Details
Main Authors: Y. Yu, D. A. Rothrock, J. Zhang
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.454.5670
http://psc.apl.washington.edu/zhang/Pubs/Yu_etal2001.pdf
Description
Summary:Abstract. Temperatures and albedos derived from satellite imagery are combined with a thermodynamic ice model to estimate thin ice thickness distributions over the Beaufort and the northern Greenland seas. The study shows that thin ice (thinner than 1 m) occupied over half the area in the seasonal ice zones in November and December of 1990 but dropped significantly in April 1991; the Beaufort Shelf showed the largest seasonal change. The aggregate properties of surface salt flux and compressive ice strength, both strongly dependent on the thin end of the ice thickness distribution, were estimated with data from advanced very high resolution radiometer to reveal the spatial and temporal variations over a large scale. The salt flux from growing thin ice was 1-2 orders of magnitude larger on the Beaufort and Greenland Shelves than in the deep basins. On the shelves, flux from thin ice accounted for over 90 % of the total surface salt budget. These satellite-derived estimates provided detailed spatial information on salt flux, which can be of great use in studies of surface patterns of salinity forcing and shelf-basin interaction. Also revealed by the satellite data was the wide range in values of compressive strength, which affects how freely the ice cover can deform. Strengths were low in early winter and in seasonal ice zones and nearly doubled in spring. Both thin ice fraction and compressive ice strength estimated from satellite imagery were in good agreement with those simulated by a coupled ice-ocean model. 1.