Title: will be set by the publisher Editors: will be set by the publisher EAS Publications Series, Vol.?, 2009 THE BEST SITE ON EARTH?

Abstract. We compare the merits of potential observatory sites on the Antarctic Plateau, in regard to the boundary layer, cloud cover, free atmosphere seeing, aurorae, airglow, and precipitable water vapour. We find that (a) all Antarctic sites are likely compromised for optical work by airglow and...

Full description

Bibliographic Details
Main Authors: W. Saunders, J. S. Lawrence, J. W. V. Storey, M. C. B. Ashley, P. Minnis, D. M. Winker, G. Liu, C. Kulesa
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.433.2543
http://www.phys.unsw.edu.au/jacara/Papers/pdf/Frascati_Saunders2.pdf
Description
Summary:Abstract. We compare the merits of potential observatory sites on the Antarctic Plateau, in regard to the boundary layer, cloud cover, free atmosphere seeing, aurorae, airglow, and precipitable water vapour. We find that (a) all Antarctic sites are likely compromised for optical work by airglow and aurorae; (b) Dome A is the best existing site in almost all respects; (c) there is an even better site (‘Ridge A’) 150kms SW of Dome A; (d) Dome F is a remarkably good site except for aurorae; (e) Dome C probably has the least cloud cover of any of the sites, and might be able to use a predicted ‘OH hole ’ in the Spring. The Antarctic plateau probably contains the best astronomical sites on Earth, but none of the existing bases were situated with astronomy in mind. In Saunders et al.(2009), we use published data and models, and unpublished meteorological and other information, to try to compare the merits of the potential sites. Here, we summarise only the new findings and conclusions. We include boundary layer thickness, cloud cover, auroral emission, airglow, precipitable water vapour, and