2012: Upper ocean singular vectors of the North Atlantic climate with implications for linear predictability and variability

The limits of predictability of the meridional overturning circulation (MOC) and upper-ocean temperatures due to errors in ocean initial conditions and model parametrizations are investigated in an idealized configuration of an ocean general circulation model (GCM). Singular vectors (optimal perturb...

Full description

Bibliographic Details
Main Authors: L. Zanna, A P. Heimbach, B A. M. Moore C, E. Tziperman A
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.419.2957
http://www.seas.harvard.edu/climate/eli/reprints/Zanna-Heimbach-Moore-Tziperman-2012.pdf
Description
Summary:The limits of predictability of the meridional overturning circulation (MOC) and upper-ocean temperatures due to errors in ocean initial conditions and model parametrizations are investigated in an idealized configuration of an ocean general circulation model (GCM). Singular vectors (optimal perturbations) are calculated using the GCM, its tangent linear and adjoint models to determine an upper bound on the predictability of North Atlantic climate. The maximum growth time-scales of MOC and upper-ocean temperature anomalies, excited by the singular vectors, are 18.5 and 13 years respectively and in part explained by the westward propagation of upper-ocean anomalies against the mean flow. As a result of the linear interference of non-orthogonal eigenmodes of the non-normal dynamics, the ocean dynamics are found to actively participate in the significant growth of the anomalies. An initial density perturbation of merely 0.02 kg m −3 is found to lead to a 1.7 Sv MOC anomaly after 18.5 years. In addition, Northern Hemisphere upper-ocean temperature perturbations can be amplified by a factor of 2 after 13 years.