2006a: Location of the Antarctic polar front from AMSR-E satellite sea surface temperature measurements

The location of the Southern Ocean polar front (PF) is mapped from the first 3 yr of remotely sensed Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) sea surface temperature (SST) measurements. In agreement with previous studies, the mean path of the Antarctic PF and it...

Full description

Bibliographic Details
Main Authors: Shenfu Dong, Janet Sprintall, Sarah, T. Gille
Other Authors: The Pennsylvania State University CiteSeerX Archives
Format: Text
Language:English
Subjects:
Online Access:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.411.9244
http://www-pord.ucsd.edu/~sgille/pub_dir/dong_et_al_jpo06.pdf
Description
Summary:The location of the Southern Ocean polar front (PF) is mapped from the first 3 yr of remotely sensed Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) sea surface temperature (SST) measurements. In agreement with previous studies, the mean path of the Antarctic PF and its standard deviation are strongly influenced by bottom topography. However, the mean PF path diverges slightly from previous studies in several regions where there is high mesoscale variability. Although the SST and SST gradient at the PF show spatially coherent seasonal variations, with the highest temperature and the lowest temperature gradient during summer, the seasonal variations in the location of the PF are not spatially coherent. The temporal mean SST at the PF corresponds well to the mean PF path: the temperature is high in the Atlantic and Indian Ocean sections and is low in the Pacific Ocean section where the PF has a more southerly position. The relationship of the wind field with the Antarctic PF location and proxies for the zonal and meridional PF transports are examined statistically. Coherence analysis suggests that the zonal wind stress accelerates the zonal transport of the PF. The analysis presented herein also suggests that the meridional shifts of the Antarctic PF path correspond to the meridional shifts of the wind field. 1.